#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle import paddle.nn.functional as F @OpTestTool.skip_if( not is_compiled_with_cuda(), "x86 test will be skipped due to timeout." ) class TestReluOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.inputs = {} self.prepare_inputs() def prepare_inputs(self): self.inputs = { "x": self.random(self.case["shape"], self.case["dtype"], -1.0, 1.0), "dout": self.random( self.case["shape"], self.case["dtype"], -1.0, 1.0 ), } def build_paddle_program(self, target): x = paddle.to_tensor(self.inputs["x"], stop_gradient=False) out = F.relu(x) self.paddle_outputs = [out] self.paddle_grads = self.get_paddle_grads( [out], [x], [self.inputs["dout"]] ) def build_cinn_program(self, target): builder = NetBuilder("relu") x = builder.create_input( self.nptype2cinntype(self.inputs["x"].dtype), self.inputs["x"].shape, "x", ) out = builder.relu(x) dout = builder.create_input( self.nptype2cinntype(self.inputs["dout"].dtype), self.inputs["dout"].shape, "dout", ) x_grad = builder.relu_grad(dout, out) prog = builder.build() res = self.get_cinn_output( prog, target, [x, dout], [self.inputs["x"], self.inputs["dout"]], [out, x_grad], passes=[], ) self.cinn_outputs = [res[0]] self.cinn_grads = [res[1]] def test_check_results(self): self.check_outputs_and_grads() class TestReluOpShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestReluOpShape" self.cls = TestReluOp self.inputs = [ { "shape": [10], }, { "shape": [8, 5], }, { "shape": [10, 3, 5], }, { "shape": [80, 40, 5, 7], }, { "shape": [80, 1, 5, 7], }, { "shape": [80, 3, 1024, 7], }, { "shape": [10, 5, 1024, 2048], }, { "shape": [1], }, { "shape": [512], }, { "shape": [1024], }, { "shape": [2048], }, { "shape": [1, 1, 1, 1], }, ] self.dtypes = [ {"dtype": "float32"}, ] self.attrs = [] class TestReluOpDtype(TestCaseHelper): def init_attrs(self): self.class_name = "TestReluOpDtype" self.cls = TestReluOp self.inputs = [ { "shape": [1], }, { "shape": [5], }, { "shape": [80, 40, 5, 7], }, ] self.dtypes = [ {"dtype": "float16"}, {"dtype": "float32"}, {"dtype": "float64"}, ] self.attrs = [] if __name__ == "__main__": TestReluOpShape().run() TestReluOpDtype().run()