#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import cinn import numpy as np from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle @OpTestTool.skip_if( not is_compiled_with_cuda(), "x86 test will be skipped due to timeout." ) class TestCastOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.prepare_inputs() def prepare_inputs(self): self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["x_dtype"] ) def build_paddle_program(self, target): x = paddle.to_tensor(self.x_np, stop_gradient=True) out = paddle.cast(x, self.case["d_dtype"]) self.paddle_outputs = [out] # Note: If the forward and backward operators are run in the same program, # the forward result will be incorrect. def build_cinn_program(self, target): builder = NetBuilder("cast") x = builder.create_input( self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], "x", ) out = builder.cast(x, self.case["d_dtype"]) prog = builder.build() res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) self.cinn_outputs = [res[0]] def test_check_results(self): max_relative_error = ( self.case["max_relative_error"] if "max_relative_error" in self.case else 1e-5 ) self.check_outputs_and_grads(max_relative_error=max_relative_error) class TestCastShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestCastOpCase" self.cls = TestCastOp self.inputs = [ { "x_shape": [1], }, { "x_shape": [1024], }, { "x_shape": [32, 64], }, { "x_shape": [16, 8, 4, 2], }, ] self.dtypes = [ { "x_dtype": "float32", } ] self.attrs = [ { "d_dtype": "float64", } ] class TestCastDtype(TestCaseHelper): def init_attrs(self): self.class_name = "TestCastOpCase" self.cls = TestCastOp self.inputs = [ { "x_shape": [32, 64], } ] self.dtypes = [ { "x_dtype": "bool", }, { "x_dtype": "int8", }, {"x_dtype": "int16"}, { "x_dtype": "int32", }, {"x_dtype": "int64"}, {"x_dtype": "float16", "max_relative_error": 1e-3}, { "x_dtype": "float32", }, { "x_dtype": "float64", }, ] self.attrs = [ { "d_dtype": "bool", }, { "d_dtype": "int8", }, {"d_dtype": "int16"}, { "d_dtype": "int32", }, {"d_dtype": "int64"}, {"d_dtype": "float16", "max_relative_error": 1e-3}, { "d_dtype": "float32", }, { "d_dtype": "float64", }, ] if __name__ == "__main__": TestCastShape().run() TestCastDtype().run()