#!/usr/bin/env python3 # Copyright (c) 2022 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np from op_mapper_test import OpMapperTest import paddle class TestScatterOp(OpMapperTest): def init_input_data(self): dim0 = 6 dim1 = 10 x_data = self.random([dim0, dim1], "float32") ids_data = np.random.randint( 0, dim0, [random.randint(1, 5)], dtype=np.int32 ) updates_data = self.random([len(ids_data), dim1], "float32") self.feed_data = {'x': x_data, 'ids': ids_data, 'updates': updates_data} def set_op_type(self): return "scatter" def set_op_inputs(self): x = paddle.static.data( name='x', shape=self.feed_data['x'].shape, dtype=self.feed_data['x'].dtype, ) ids = paddle.static.data( name='ids', shape=self.feed_data['ids'].shape, dtype=self.feed_data['ids'].dtype, ) updates = paddle.static.data( name='updates', shape=self.feed_data['updates'].shape, dtype=self.feed_data['updates'].dtype, ) return {'X': [x], 'Ids': [ids], 'Updates': [updates]} def set_op_attrs(self): return {'overwrite': False} def set_op_outputs(self): return {'Out': [str(self.feed_data['x'].dtype)]} def test_check_results(self): self.check_outputs_and_grads() class TestScatterOpOverWrite(TestScatterOp): def init_input_data(self): dim0 = 6 dim1 = 10 x_data = self.random([dim0, dim1], "float32") ids_data = np.random.randint( 0, dim0, [random.randint(1, 10)], dtype=np.int32 ) # remove duplicate elements, because paddle has undetermined behavior for duplicate elements ids_data = np.unique(ids_data) updates_data = self.random([len(ids_data), dim1], "float32") self.feed_data = {'x': x_data, 'ids': ids_data, 'updates': updates_data} def set_op_attrs(self): return {'overwrite': True} if __name__ == "__main__": unittest.main()