// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/shuffle_batch_op.h" #include #include "paddle/fluid/framework/no_need_buffer_vars_inference.h" #include "paddle/fluid/framework/var_type_inference.h" namespace paddle { namespace operators { class ShuffleBatchOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE_EQ( ctx->HasInput("X"), true, platform::errors::NotFound("Input(X) should not be null.")); PADDLE_ENFORCE_EQ( ctx->HasInput("Seed"), true, platform::errors::NotFound("Input(Seed) should not be null.")); PADDLE_ENFORCE_EQ( ctx->HasOutput("Out"), true, platform::errors::NotFound("Output(Out) should not be null.")); PADDLE_ENFORCE_EQ( ctx->HasOutput("ShuffleIdx"), true, platform::errors::NotFound("Output(ShuffleIdx) should not be null.")); PADDLE_ENFORCE_EQ( ctx->HasOutput("SeedOut"), true, platform::errors::NotFound("Output(SeedOut) should not be null.")); ctx->ShareDim("X", "Out"); ctx->ShareLoD("X", "Out"); ctx->ShareDim("Seed", "SeedOut"); ctx->ShareLoD("Seed", "SeedOut"); ctx->SetOutputDim("ShuffleIdx", phi::make_ddim({-1})); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(data_type, ctx.device_context()); } framework::OpKernelType GetKernelTypeForVar( const std::string &var_name, const framework::Tensor &tensor, const framework::OpKernelType &expected_kernel_type) const override { if (var_name == "Seed") { return expected_kernel_type; } return framework::OperatorWithKernel::GetKernelTypeForVar( var_name, tensor, expected_kernel_type); } }; class ShuffleBatchOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(LoDTensor) The input tensor of shuffle_batch op."); AddInput("Seed", "(LoDTensor) The input seed tensor."); AddAttr( "startup_seed", "If input tensor 'Seed' is not initialized, the 'startup_seed' " "will be used to replace it. The seed after shuffle batch will " "be saved in 'SeedOut'. ") .SetDefault(0); AddOutput("Out", "(LoDTensor) The output tensor of shuffle_batch op."); AddOutput("ShuffleIdx", "(Tensor) Record forword shuffle order"); AddOutput("SeedOut", "(LoDTensor) Saved new generated seed."); AddComment(R"DOC( Shuffle Batch Operator. This operator is used to shuffle input $X$'s elements. There is 2 input. The product of input dims (except last dim) numbers of elements will be shuffled. $Seed$ is tensor of seed. There are 3 outputs. $Out$ is shuffled tensor of input. $ShuffleIdx$ is the tensor used to record shuffle order. $SeedOut$ is same tensor of $Seed$. )DOC"); } }; class ShuffleBatchOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE_EQ( ctx->HasInput("ShuffleIdx"), true, platform::errors::NotFound("Input(ShuffleIdx) should not be null")); PADDLE_ENFORCE_EQ( ctx->HasInput(framework::GradVarName("Out")), true, platform::errors::NotFound("Grad Input(Out) should not be null")); PADDLE_ENFORCE_EQ( ctx->HasOutput(framework::GradVarName("X")), true, platform::errors::NotFound("Grad Output(X) should not be null")); ctx->ShareDim(framework::GradVarName("Out"), framework::GradVarName("X")); ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X")); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { auto data_type = OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")); return framework::OpKernelType(data_type, ctx.device_context()); } }; template class ShuffleBatchGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("shuffle_batch_grad"); op->SetInput("ShuffleIdx", this->Output("ShuffleIdx")); op->SetAttrMap(this->Attrs()); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(shuffle_batch, ops::ShuffleBatchOp, ops::ShuffleBatchOpMaker, ops::ShuffleBatchGradOpMaker, ops::ShuffleBatchGradOpMaker); REGISTER_OPERATOR(shuffle_batch_grad, ops::ShuffleBatchOpGrad); REGISTER_OP_CPU_KERNEL(shuffle_batch, ops::ShuffleBatchKernel, ops::ShuffleBatchKernel, ops::ShuffleBatchKernel, ops::ShuffleBatchKernel); REGISTER_OP_CPU_KERNEL(shuffle_batch_grad, ops::ShuffleBatchGradKernel, ops::ShuffleBatchGradKernel, ops::ShuffleBatchGradKernel, ops::ShuffleBatchGradKernel);