// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/renorm_op.h" #include #include #include #include #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif namespace paddle { namespace operators { class RenormOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; using DDim = paddle::framework::DDim; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "abs"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "abs"); auto in_dims = ctx->GetInputDim("X"); ctx->SetOutputDim("Out", in_dims); ctx->ShareLoD("X", /*->*/ "Out"); } }; class RenormOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of renorm op."); AddOutput("Out", "(Tensor), The output tensor of renorm op."); AddAttr("p", "(float, norm's power"); AddAttr("axis", "int,the dimension to slice over to get the sub-tensors"); AddAttr("max_norm", "(float, the norm upper-bound"); AddAttr("use_cudnn", "(bool, default false) Only used in cudnn kernel, need " "install cudnn") .SetDefault(false); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); AddComment(R"DOC( Renorm Operator. This operator is used to scale tensor sliced by axis if its p-norm execeeds maxnorm )DOC"); } }; class RenormGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", "Out@Grad", "AbsGrad"); OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", "X@Grad", "AbsGrad"); auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out")); ctx->SetOutputDim(framework::GradVarName("X"), dout_dims); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(dtype, ctx.GetPlace()); } }; template class RenormGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr retv) const override { retv->SetType("renorm_grad"); retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); retv->SetInput("X", this->Input("X")); retv->SetAttrMap(this->Attrs()); retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(renorm, ops::RenormOp, ops::RenormOpMaker, ops::RenormGradMaker, ops::RenormGradMaker); REGISTER_OPERATOR(renorm_grad, ops::RenormGradOp); REGISTER_OP_CPU_KERNEL(renorm, ops::CPURenormKernel, ops::CPURenormKernel); REGISTER_OP_CPU_KERNEL(renorm_grad, ops::CPURenormGradKernel, ops::CPURenormGradKernel);