// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/set_value_op.h" #include #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/infermeta/unary.h" namespace paddle { namespace framework { class InferShapeContext; class OpDesc; template class EmptyGradOpMaker; } // namespace framework namespace imperative { class OpBase; } // namespace imperative } // namespace paddle namespace paddle { namespace operators { using Tensor = phi::DenseTensor; class SetValue : public framework::OperatorWithKernel { public: SetValue(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace()); } framework::OpKernelType GetKernelTypeForVar( const std::string &var_name, const Tensor &tensor, const framework::OpKernelType &expected_kernel_type) const override { if (var_name == "StartsTensorList" || var_name == "EndsTensorList" || var_name == "StepsTensorList") { return expected_kernel_type; } return framework::OpKernelType( expected_kernel_type.data_type_, tensor.place(), tensor.layout()); } }; class SetValueMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { // Input AddInput("Input", "(Tensor) Input tensor of set_value operator."); AddInput("ValueTensor", "(Tensor) Value tensor of set_value operator.") .AsDispensable(); AddInput("StartsTensorList", "(vector>, optional) If provided, set_value will " "use this. The shape of the tensor in vector must be [1]." "It has higher priority compare with attr(starts).") .AsDuplicable() .AsDispensable(); AddInput("EndsTensorList", "(vector>, optional) If provided, set_value will " "use this. The shape of the tensor in vector must BE [1]." "It has higher priority compare with attr(ends).") .AsDuplicable() .AsDispensable(); AddInput("StepsTensorList", "(vector>, optional) If provided, set_value will " "use this. The shape of the tensor in vector must BE [1]." "It has higher priority compare with attr(steps).") .AsDuplicable() .AsDispensable(); // Output AddOutput("Out", "(Tensor) Output tensor of set_value operator. The output is the " "same Tensor as input"); // Attr AddAttr("dtype", "data type of input.") .InEnum({framework::proto::VarType::BOOL, framework::proto::VarType::INT32, framework::proto::VarType::INT64, framework::proto::VarType::FP32, framework::proto::VarType::FP64, framework::proto::VarType::FP16}) .SetDefault(framework::proto::VarType::FP32); AddAttr>( "axes", "(list) Axes that `starts` and `ends` apply to."); AddAttr>( "starts", "(list) Starting indices of corresponding axis in `axes`.") .SetDefault({}); AddAttr>( "ends", "(list) Ending indices of corresponding axis in `axes`.") .SetDefault({}); AddAttr>( "steps", "(list) Stride step from the start to the end.") .SetDefault({}); AddAttr>("decrease_axes", "(list) The axes to decrease.") .SetDefault({}); AddAttr>("none_axes", "(list) The axes to none.") .SetDefault({}); AddAttr>("bool_values", "Store the bool values.") .SetDefault({}); AddAttr>("fp32_values", "Store the float32 values.") .SetDefault({}); AddAttr>("int32_values", "Store the int32 values.") .SetDefault({}); AddAttr>("int64_values", "Store the int64 values.") .SetDefault({}); AddAttr>("fp64_values", "Store the float64 values.") .SetDefault({}); AddAttr>("fp16_values", "Store the float16 values.") .SetDefault({}); AddAttr>("shape", "(vector) Shape of values.") .SetDefault({}); AddComment(R"DOC(SetValue operator. Assignment to a Tensor in static mode. )DOC"); } }; template class SetValueGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { if (this->HasInput("ValueTensor")) { op->SetType("set_value_grad"); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetInput("ValueTensor", this->Input("ValueTensor")); if (this->HasInput("StartsTensorList")) { op->SetInput("StartsTensorList", this->Input("StartsTensorList")); } if (this->HasInput("EndsTensorList")) { op->SetInput("EndsTensorList", this->Input("EndsTensorList")); } if (this->HasInput("StepsTensorList")) { op->SetInput("StepsTensorList", this->Input("StepsTensorList")); } op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("ValueTensor"), this->InputGrad("ValueTensor")); op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input")); } else { op->SetType("assign"); op->SetInput("X", this->OutputGrad("Out")); op->SetOutput("Out", this->InputGrad("Input")); } } }; class SetValueGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", framework::GradVarName("Out"), "set_value_grad"); auto in_dims = ctx->GetInputDim(framework::GradVarName("Out")); PADDLE_ENFORCE_LT( in_dims.size(), 7, platform::errors::InvalidArgument( "The dimension of set_value_grad operator's input should be less " "than 7, but received dimension is %d.", in_dims.size())); if (ctx->HasOutput(framework::GradVarName("ValueTensor"))) { ctx->ShareDim("ValueTensor", /*->*/ framework::GradVarName("ValueTensor")); ctx->ShareLoD("ValueTensor", /*->*/ framework::GradVarName("ValueTensor")); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { auto in_tensor = ctx.Input(framework::GradVarName("Out")); return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")), in_tensor->place()); } framework::OpKernelType GetKernelTypeForVar( const std::string &var_name, const Tensor &tensor, const framework::OpKernelType &expected_kernel_type) const override { if (var_name == "StartsTensorList" || var_name == "EndsTensorList" || var_name == "StepsTensorList") { return expected_kernel_type; } return framework::OpKernelType( expected_kernel_type.data_type_, tensor.place(), tensor.layout()); } }; DECLARE_INPLACE_OP_INFERER(SetValueOpInplaceInferer, {"Input", "Out"}); } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; DECLARE_INFER_SHAPE_FUNCTOR(set_value, SetValueInferShapeFunctor, PD_INFER_META(phi::SetValueInferMeta)); REGISTER_OPERATOR(set_value, ops::SetValue, ops::SetValueMaker, ops::SetValueGradMaker, ops::SetValueGradMaker, ops::SetValueOpInplaceInferer, SetValueInferShapeFunctor); REGISTER_OPERATOR(set_value_grad, ops::SetValueGrad); REGISTER_OP_VERSION(set_value) .AddCheckpoint( R"ROC( Upgrade set_value, add 3 inputs [StartsTensorList, EndsTensorList, StepsTensorList] and 1 attribute [steps]. )ROC", paddle::framework::compatible::OpVersionDesc() .NewInput("StartsTensorList", "If provided, set_value will use this.The shape of the " "tensor in vector must be [1]. It has higher priority " "compare with attr(starts).") .NewInput("EndsTensorList", "If provided, set_value will use this.The shape of the " "tensor in vector must be [1]. It has higher priority " "compare with attr(ends).") .NewInput("StepsTensorList", "If provided, set_value will use this.The shape of the " "tensor in vector must be [1]. It has higher priority " "compare with attr(steps).") .ModifyAttr("starts", "Starting indices of corresponding axis in `axes`.", std::vector{}) .ModifyAttr("ends", "Ending indices of corresponding axis in `axes`.", std::vector{}) .NewAttr("steps", "Stride step from the start to the end.", std::vector{})) .AddCheckpoint( R"ROC( Upgrade set_value, add 1 attribute [decrease_axes]. )ROC", paddle::framework::compatible::OpVersionDesc().NewAttr( "decrease_axes", "The axes to decrease.", std::vector{})) .AddCheckpoint( R"ROC( Upgrade set_value, add 1 attribute [none_axes]. )ROC", paddle::framework::compatible::OpVersionDesc().NewAttr( "none_axes", "The axes with none index.", std::vector{}));