# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from test_collective_api_base import TestCollectiveAPIRunnerBase, runtime_main import paddle from paddle import fluid, framework from paddle.fluid import data_feeder paddle.enable_static() def send_new(tensor, dst, group=None, sync_op=True): op_type = 'p_send' data_feeder.check_variable_and_dtype( tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8', 'bool', ], op_type, ) ring_id = 0 if group is None else group.id helper = framework.LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'x': [tensor]}, attrs={ 'ring_id': ring_id, 'peer': dst, 'dynamic_shape': True, }, ) return None def recv_new(tensor, src, group=None, sync_op=True, dtype='float32'): op_type = 'p_recv' data_feeder.check_variable_and_dtype( tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8', 'bool', ], op_type, ) ring_id = 0 if group is None else group.id helper = framework.LayerHelper(op_type, **locals()) helper.append_op( type=op_type, outputs={'out': [tensor]}, attrs={ 'ring_id': ring_id, 'peer': src, 'dynamic_shape': True, 'out_shape': tensor.shape, 'dtype': fluid.framework.convert_np_dtype_to_dtype_(dtype), }, ) return None class TestCollectiveSendRecvAPI(TestCollectiveAPIRunnerBase): def __init__(self): self.global_ring_id = 0 def get_model(self, main_prog, startup_program, rank): with fluid.program_guard(main_prog, startup_program): tindata = paddle.static.data( name="tindata", shape=[10, 1000], dtype='float32', ) if rank == 0: paddle.distributed.send(tindata, dst=1) else: paddle.distributed.recv(tindata, src=0) return [tindata] def get_model_new( self, main_prog, startup_program, rank, dtype='float32', reduce_type=None, ): with fluid.program_guard(main_prog, startup_program): tindata = paddle.static.data( name="tindata", shape=[10, 1000], dtype=dtype, ) if rank == 0: send_new(tindata, dst=1) else: recv_new(tindata, src=0, dtype=dtype) return [tindata] if __name__ == "__main__": runtime_main(TestCollectiveSendRecvAPI, "sendrecv")