# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from test_collective_api_base import TestCollectiveAPIRunnerBase, runtime_main import paddle import paddle.distributed as dist from paddle import fluid, framework from paddle.fluid import data_feeder paddle.enable_static() def all_reduce_new(tensor, reduce_type=str(dist.ReduceOp.SUM), group=None): op_type = 'all_reduce' data_feeder.check_variable_and_dtype( tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8', 'bool', ], op_type, ) ring_id = 0 if group is None else group.id if not isinstance(ring_id, int): raise ValueError("The type of 'ring_id' for all_reduce should be int.") # TODO: Support task and use task.wait in static graph mode # Use use_calc_stream rather than sync_op helper = framework.LayerHelper(op_type, **locals()) if not reduce_type.isdigit(): raise ValueError( "The type of 'reduce_type' for all_reduce should be int." ) helper.append_op( type=op_type, inputs={'x': [tensor]}, outputs={'out': [tensor]}, attrs={'ring_id': ring_id, 'reduce_type': int(reduce_type)}, ) return None class TestCollectiveAllreduceAPI(TestCollectiveAPIRunnerBase): def __init__(self): self.global_ring_id = 0 def get_model(self, main_prog, startup_program, rank): with fluid.program_guard(main_prog, startup_program): tindata = paddle.static.data( name="tindata", shape=[10, 1000], dtype='float32' ) paddle.distributed.all_reduce(tindata) return [tindata] def get_model_new( self, main_prog, startup_program, rank, dtype='float32', reduce_type=str(dist.ReduceOp.SUM), ): with fluid.program_guard(main_prog, startup_program): tindata = paddle.static.data( name="tindata", shape=[10, 1000], dtype=dtype ) all_reduce_new(tindata, reduce_type) return [tindata] if __name__ == "__main__": runtime_main(TestCollectiveAllreduceAPI, "allreduce")