// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "glog/logging.h" #include "gtest/gtest.h" #include "paddle/fluid/eager/accumulation/accumulation_node.h" #include "paddle/fluid/eager/api/all.h" #include "paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h" #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/backward.h" #include "paddle/fluid/eager/grad_node_info.h" #include "paddle/fluid/eager/hooks.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_meta.h" #include "test/cpp/eager/test_utils.h" PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT); PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_DECLARE_KERNEL(full, GPU, ALL_LAYOUT); PD_DECLARE_KERNEL(add, KPS, ALL_LAYOUT); #endif using eager_test::CreateTensorWithValue; namespace egr { paddle::Tensor hook_function(const paddle::Tensor& t) { auto t_dense = std::dynamic_pointer_cast(t.impl()); auto ret_meta = phi::DenseTensorMeta( t_dense->dtype(), t_dense->dims(), t_dense->layout()); auto place = t_dense->place(); size_t bytes_size = phi::product(t_dense->dims()) * SizeOf(t_dense->dtype()); auto ret_dense = std::make_shared( paddle::memory::Alloc(place, bytes_size), std::move(ret_meta)); float* t_ptr = t_dense->mutable_data(place); float* ret_ptr = ret_dense->mutable_data(place); for (int i = 0; i < ret_dense->numel(); i++) { ret_ptr[i] = t_ptr[i] + 5.0; } auto ret_impl = std::dynamic_pointer_cast(ret_dense); paddle::Tensor ret = paddle::Tensor(); ret.set_impl(ret_impl); return ret; } TEST(FwdBwdJoint, SingleNode) { eager_test::InitEnv(paddle::platform::CPUPlace()); // 1. Prepare Input paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); paddle::Tensor tensor = CreateTensorWithValue(ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); egr_utils_api::RetainGradForTensor(tensor); // 3. Run Forward float scale = 2.0; float bias = 3.0; paddle::Tensor out = egr::scale( tensor, scale, bias, true /*bias_after_scale*/, true /*trace_backward*/); // Examine Forward Output eager_test::CompareTensorWithValue(out, 13.0); std::vector outs = {out}; // 4. Run Backward Backward(outs, {}); VLOG(7) << "Target Grad is: " << std::static_pointer_cast( EagerUtils::unsafe_autograd_meta(tensor)->Grad().impl()) ->data()[0]; // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 2.0); } /* inp | Node0 | Node1 | out */ TEST(FwdBwdJoint, LinearNodes) { eager_test::InitEnv(paddle::platform::CPUPlace()); // 1. Prepare Input paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); paddle::Tensor tensor = CreateTensorWithValue(ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); egr_utils_api::RetainGradForTensor(tensor); // 3. Run Forward // Run Forward Node 0 float scale0 = 2.0; float bias0 = 3.0; paddle::Tensor out0 = egr::scale(tensor, scale0, bias0, true /*bias_after_scale*/, true /*trace_backward*/); // Run Forward Node 1 float scale1 = 5.0; float bias1 = 10.0; paddle::Tensor out1 = egr::scale( out0, scale1, bias1, true /*bias_after_scale*/, true /*trace_backward*/); // Examine Forward Output 0 eager_test::CompareTensorWithValue(out0, 13.0); // Examine Forward Output 1 eager_test::CompareTensorWithValue(out1, 75.0); std::vector outs = {out1}; // 4. Run Backward Backward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 10.0); } /* inp | Node0 ____|____ | | Node1 Node2 | | out1 out2 */ TEST(FwdBwdJoint, BranchedNodes) { eager_test::InitEnv(paddle::platform::CPUPlace()); // 1. Prepare Input paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); paddle::Tensor tensor = CreateTensorWithValue(ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); egr_utils_api::RetainGradForTensor(tensor); // 3. Run Forward // Run Forward Node 0 float scale0 = 2.0; float bias0 = 3.0; paddle::Tensor out0 = egr::scale(tensor, scale0, bias0, true /*bias_after_scale*/, true /*trace_backward*/); // Run Forward Node 1 float scale1 = 5.0; float bias1 = 10.0; paddle::Tensor out1 = egr::scale( out0, scale1, bias1, true /*bias_after_scale*/, true /*trace_backward*/); // Run Forward Node 2 float scale2 = 10.0; float bias2 = 20.0; paddle::Tensor out2 = egr::scale( out0, scale2, bias2, true /*bias_after_scale*/, true /*trace_backward*/); // Examine Forward Output 0 eager_test::CompareTensorWithValue(out0, 13.0); // Examine Forward Output 1 eager_test::CompareTensorWithValue(out1, 75.0); // Examine Forward Output 2 { auto dense_out = std::dynamic_pointer_cast(out2.impl()); float* ptr = dense_out->mutable_data(paddle::platform::CPUPlace()); for (int i = 0; i < 20; i++) { PADDLE_ENFORCE(ptr[i] == 150.0, paddle::platform::errors::Fatal( "Detected numerical Error, Expected %f but got %f", 150.0, ptr[i])); } } // 4. Run Backward std::vector outs = {out1, out2}; Backward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 30.0); } /* inp | Node0 ____|____ | | Node1 Node2 | | out1 out2 */ TEST(FwdBwdJoint, GradientHook) { eager_test::InitEnv(paddle::platform::CPUPlace()); // 1. Prepare Input paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); paddle::Tensor tensor = CreateTensorWithValue(ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); egr_utils_api::RetainGradForTensor(tensor); // 3. Run Forward // Run Forward Node 0 float scale0 = 2.0; float bias0 = 3.0; paddle::Tensor out0 = egr::scale(tensor, scale0, bias0, true /*bias_after_scale*/, true /*trace_backward*/); egr_utils_api::RetainGradForTensor(out0); // hook: +5 egr_utils_api::RegisterGradientHookForTensor(out0, hook_function); // hook: +5 // Run Forward Node 1 float scale1 = 5.0; float bias1 = 10.0; paddle::Tensor out1 = egr::scale( out0, scale1, bias1, true /*bias_after_scale*/, true /*trace_backward*/); egr_utils_api::RetainGradForTensor(out1); // hook: +5 egr_utils_api::RegisterGradientHookForTensor(out1, hook_function); // hook: +5 // Run Forward Node 2 float scale2 = 10.0; float bias2 = 20.0; paddle::Tensor out2 = egr::scale( out0, scale2, bias2, true /*bias_after_scale*/, true /*trace_backward*/); egr_utils_api::RetainGradForTensor(out2); // hook: +5 egr_utils_api::RegisterGradientHookForTensor(out2, hook_function); // hook: +5 // 4. Run Backward std::vector outs = {out1, out2}; Backward(outs, {}); // Examine Backward Grad // leaf grad eager_test::CompareGradTensorWithValue(tensor, 190.0); // out0 grad eager_test::CompareGradTensorWithValue(out0, 90.0); // out1 grad eager_test::CompareGradTensorWithValue(out1, 1.0); // out2 grad eager_test::CompareGradTensorWithValue(out2, 1.0); } /* inp | Node0 ____|____ | | Node1 Node2 | | out1 out2 */ TEST(FwdBwdJoint, CrossBatchAccumulation) { eager_test::InitEnv(paddle::platform::CPUPlace()); // 1. Prepare Input paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); paddle::Tensor tensor = CreateTensorWithValue(ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); egr_utils_api::RetainGradForTensor(tensor); // 3. Run Forward // Run Forward Node 0 float scale0 = 2.0; float bias0 = 3.0; paddle::Tensor out0 = egr::scale(tensor, scale0, bias0, true /*bias_after_scale*/, true /*trace_backward*/); // Run Forward Node 1 float scale1 = 5.0; float bias1 = 10.0; paddle::Tensor out1 = egr::scale( out0, scale1, bias1, true /*bias_after_scale*/, true /*trace_backward*/); // Run Forward Node 2 float scale2 = 10.0; float bias2 = 20.0; paddle::Tensor out2 = egr::scale( out0, scale2, bias2, true /*bias_after_scale*/, true /*trace_backward*/); // 4. Run Backward std::vector outs = {out1, out2}; Backward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 30.0); // Cross Batch Accumulation Backward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 60.0); } /* ---------------------------------------------------- */ /* ---------------------- CUDA Tests ------------------ */ /* ---------------------------------------------------- */ #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) TEST(FwdBwdJoint, SingleNodeCUDA) { eager_test::InitEnv(paddle::platform::CUDAPlace()); // 1. Prepare Input paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); paddle::Tensor tensor = CreateTensorWithValue(ddim, paddle::platform::CUDAPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); egr_utils_api::RetainGradForTensor(tensor); // 3. Run Forward float scale = 2.0; float bias = 3.0; paddle::Tensor out = egr::scale( tensor, scale, bias, true /*bias_after_scale*/, true /*trace_backward*/); // Examine Forward Output eager_test::CompareTensorWithValue(out, 13.0); std::vector outs = {out}; // 4. Run Backward Backward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 2.0); } /* inp | Node0 ____|____ | | Node1 Node2 | | out1 out2 */ TEST(FwdBwdJoint, BranchedNodesCUDA) { eager_test::InitEnv(paddle::platform::CUDAPlace()); // 1. Prepare Input paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32}); paddle::Tensor tensor = CreateTensorWithValue(ddim, paddle::platform::CUDAPlace(), phi::DataType::FLOAT32, phi::DataLayout::NCHW, 5.0 /*value*/, true /*is_leaf*/); egr_utils_api::RetainGradForTensor(tensor); // 3. Run Forward // Run Forward Node 0 float scale0 = 2.0; float bias0 = 3.0; paddle::Tensor out0 = egr::scale(tensor, scale0, bias0, true /*bias_after_scale*/, true /*trace_backward*/); // Run Forward Node 1 float scale1 = 5.0; float bias1 = 10.0; paddle::Tensor out1 = egr::scale( out0, scale1, bias1, true /*bias_after_scale*/, true /*trace_backward*/); // Run Forward Node 2 float scale2 = 10.0; float bias2 = 20.0; paddle::Tensor out2 = egr::scale( out0, scale2, bias2, true /*bias_after_scale*/, true /*trace_backward*/); // Examine Forward Output 0 eager_test::CompareTensorWithValue(out0, 13.0); // Examine Forward Output 1 eager_test::CompareTensorWithValue(out1, 75.0); // Examine Forward Output 2 eager_test::CompareTensorWithValue(out2, 150.0); // TODO(jiabin): fix this with add functor // 4. Run Backward std::vector outs = {out1, out2}; Backward(outs, {}); // Examine Backward Grad eager_test::CompareGradTensorWithValue(tensor, 30.0); } #endif } // namespace egr