# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np from paddle.common_ops_import import fill_constant from ..fluid.layers import utils from ..fluid.layers import tensor from ..static import Variable, device_guard from ..framework import _current_expected_place, _get_paddle_place from ..framework import dygraph_only from ..framework import core from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder from paddle.tensor.attribute import _complex_to_real_dtype, _real_to_complex_dtype # TODO: define functions to get create a tensor from ..fluid.layers import linspace # noqa: F401 import paddle from paddle import _C_ops from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _in_eager_without_dygraph_check __all__ = [] @dygraph_only def to_tensor(data, dtype=None, place=None, stop_gradient=True): r""" Constructs a ``paddle.Tensor`` from ``data`` , which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor. If the ``data`` is already a Tensor, copy will be performed and return a new tensor. If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly. Args: data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor. Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor. dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8', 'complex64' , 'complex128'. Default: None, infers dtype from ``data`` except for python float number which gets dtype from ``get_default_type`` . place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True. Returns: Tensor: A Tensor constructed from ``data`` . Raises: TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]] TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128 ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. Examples: .. code-block:: python import paddle type(paddle.to_tensor(1)) # paddle.to_tensor(1) # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True, # [1]) x = paddle.to_tensor(1, stop_gradient=False) print(x) # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False, # [1]) paddle.to_tensor(x) # A new tensor will be created with default stop_gradient=True # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True, # [1]) paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False) # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False, # [[0.10000000, 0.20000000], # [0.30000001, 0.40000001]]) type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')) # paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64') # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True, # [[(1+1j), (2+0j)], # [(3+2j), (4+0j)]]) """ place = _get_paddle_place(place) if place is None: place = _current_expected_place() elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace, core.XPUPlace, core.MLUPlace, core.CustomPlace)): raise ValueError( "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace, paddle.NPUPlace, paddle.XPUPlace, paddle.MLUPlace, paddle.CustomPlace" ) if not isinstance(data, np.ndarray): def _handle_dtype(data, dtype): if dtype: if convert_dtype(dtype) != convert_dtype(data.dtype): return data.astype(convert_dtype(dtype)) return data if np.isscalar(data) and not isinstance(data, str): data = np.array([data]) elif isinstance(data, (list, tuple)): data = np.array(data) if data.dtype == np.object_: raise ValueError( "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually " "this means the input data contains nested lists with different lengths. " ) elif isinstance(data, paddle.Tensor) and not in_dygraph_mode(): data = data._copy_to(place, False) data = _handle_dtype(data, dtype) data.stop_gradient = stop_gradient return data elif isinstance(data, core.eager.Tensor) and in_dygraph_mode(): data = data._copy_to(place, False) data = _handle_dtype(data, dtype) data.stop_gradient = stop_gradient return data elif isinstance(data, (core.LoDTensor, core.Tensor)): # should't expose it to users, just for internal use. # convert core.Tensor/core.LoDTensor to VarBase first # Currenly, there is no copy when places are same if in_dygraph_mode(): data = core.eager.Tensor(data) else: data = paddle.Tensor(data) if not data.place._equals(place): data = data._copy_to(place, False) data = _handle_dtype(data, dtype) data.stop_gradient = stop_gradient return data else: raise TypeError( "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor". format(type(data))) if not dtype: if data.dtype in [ 'float16', 'float32', 'float64', 'complex64', 'complex128' ]: default_type = paddle.get_default_dtype() if np.iscomplexobj(data): default_type = 'complex64' if default_type in [ 'float16', 'float32' ] else 'complex128' data = data.astype(default_type) # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they. if data.dtype in ['int32']: default_type = "int64" data = data.astype(default_type) if dtype and convert_dtype(dtype) != data.dtype: data = data.astype(convert_dtype(dtype)) if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray): return core.eager.Tensor( value=data, place=place, persistable=False, zero_copy=False, name=None, stop_gradient=stop_gradient) else: return paddle.Tensor( value=data, place=place, persistable=False, zero_copy=False, stop_gradient=stop_gradient) def full_like(x, fill_value, dtype=None, name=None): """ This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``. If the ``dtype`` is None, the data type of Tensor is same with ``x``. Args: x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64. fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type. dtype(np.dtype|str, optional): The data type of output. The data type can be one of bool, float16, float32, float64, int32, int64. The default value is None, which means the output data type is the same as input. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``. Examples: .. code-block:: python import paddle import numpy as np input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input') output = paddle.full_like(input, 2.0) # [[2. 2. 2.] # [2. 2. 2.]] """ if dtype is None: dtype = x.dtype else: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): return _C_ops.final_state_full_like(x, fill_value, dtype, x.place) if _in_legacy_dygraph(): return _C_ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype) helper = LayerHelper("full_like", **locals()) check_variable_and_dtype( x, 'x', ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'], 'full_like') check_dtype( dtype, 'dtype', ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'], 'full_like/zeros_like/ones_like') out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_any_like', inputs={'X': [x]}, attrs={'value': fill_value, "dtype": dtype}, outputs={'Out': [out]}) out.stop_gradient = True return out def ones(shape, dtype=None, name=None): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1. Args: shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64. dtype(np.dtype|str, optional): Data type of output Tensor, it supports bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1. Examples: .. code-block:: python import paddle # default dtype for ones OP data1 = paddle.ones(shape=[3, 2]) # [[1. 1.] # [1. 1.] # [1. 1.]] data2 = paddle.ones(shape=[2, 2], dtype='int32') # [[1 1] # [1 1]] # shape is a Tensor shape = paddle.full(shape=[2], dtype='int32', fill_value=2) data3 = paddle.ones(shape=shape, dtype='int32') # [[1 1] # [1 1]] """ if dtype is None: dtype = 'float32' return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name) def ones_like(x, dtype=None, name=None): """ This OP returns a Tensor filled with the value 1, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Args: x(Tensor): The input tensor which specifies shape and dtype. The dtype of ``x`` can be bool, float16, float32, float64, int32, int64. dtype(str|np.dtype, optional): The data type of the output tensor. Supported data types: bool, float16, float32, float64, int32, int64. If ``dtype`` is None, the data type is the same as ``x``. Default is None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with the value 1, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Raise: TypeError: If ``dtype`` is not None and is not bool, float16, float32, float64, int32 or int64. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1,2,3]) out1 = paddle.ones_like(x) # [1., 1., 1.] out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1] """ return full_like(x=x, fill_value=1, dtype=dtype, name=name) def zeros(shape, dtype=None, name=None): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0. Args: shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64. dtype(np.dtype|str, optional): Data type of output Tensor, it supports bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0. Examples: .. code-block:: python import paddle data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0. 0.] # [0. 0.] # [0. 0.]] data = paddle.zeros(shape=[2, 2]) # [[0. 0.] # [0. 0.]] # shape is a Tensor shape = paddle.full(shape=[2], dtype='int32', fill_value=2) data3 = paddle.zeros(shape=shape, dtype='int32') # [[0 0] # [0 0]] """ if dtype is None: dtype = 'float32' return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name) def zeros_like(x, dtype=None, name=None): """ This OP returns a Tensor filled with the value 0, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Args: x(Tensor): The input tensor which specifies shape and dtype. The dtype of ``x`` can be bool, float16, float32, float64, int32, int64. dtype(str|np.dtype, optional): The data type of the output tensor. Supported data types: bool, float16, float32, float64, int32, int64. If ``dtype`` is None, the data type is the same as ``x``. Default is None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with the value 0, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Raise: TypeError: If ``dtype`` is not None and is not bool, float16, float32, float64, int32 or int64. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) out1 = paddle.zeros_like(x) # [0., 0., 0.] out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0] """ return full_like(x=x, fill_value=0, dtype=dtype, name=name) def eye(num_rows, num_columns=None, dtype=None, name=None): """ This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere. Args: num_rows(int): the number of rows in each batch Tensor. num_columns(int, optional): the number of columns in each batch Tensor. If None, default: num_rows. dtype(np.dtype|str, optional): The data type of the returned Tensor. It should be int32, int64, float16, float32, float64. Default: if None, the data type is float32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns]. Examples: .. code-block:: python import paddle data = paddle.eye(3, dtype='int32') # [[1 0 0] # [0 1 0] # [0 0 1]] data = paddle.eye(2, 3, dtype='int32') # [[1 0 0] # [0 1 0]] """ if dtype is None: dtype = 'float32' if num_columns is None: num_columns = num_rows return paddle.fluid.layers.eye(num_rows=num_rows, num_columns=num_columns, batch_shape=None, dtype=dtype, name=name) def full(shape, fill_value, dtype=None, name=None): """ This Op return a Tensor with the ``fill_value`` which size is same as ``shape``. Args: shape(list|tuple|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Tensor, it should be an 1-D Tensor . fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor. dtype(np.dtype|str, optional): Data type of the output Tensor which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data type of created Tensor is `float32` name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``. Examples: .. code-block:: python import paddle data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') #[[0] # [0]] # attr shape is a list which contains Tensor. positive_2 = paddle.full([1], 2, "int32") data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # [[1.5 1.5]] # attr shape is a Tensor. shape = paddle.full([2], 2, "int32") data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # [[True True] # [True True]] # attr fill_value is a Tensor. val = paddle.full([1], 2.0, "float32") data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') # [[2.0] # [2.0]] """ if dtype is None: dtype = 'float32' return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name) def arange(start=0, end=None, step=1, dtype=None, name=None): """ This OP returns a 1-D Tensor with spaced values within a given interval. Values are generated into the half-open interval [``start``, ``end``) with the ``step``. (the interval including ``start`` but excluding ``end``). If ``dtype`` is float32 or float64, we advise adding a small epsilon to ``end`` to avoid floating point rounding errors when comparing against ``end``. Parameters: start(float|int|Tensor): Start of interval. The interval includes this value. If ``end`` is None, the half-open interval is [0, ``start``). If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with data type int32, int64, float32, float64. Default is 0. end(float|int|Tensor, optional): End of interval. The interval does not include this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape [1], with data type int32, int64, float32, float64. If ``end`` is None, the half-open interval is [0, ``start``). Default is None. step(float|int|Tensor, optional): Spacing between values. For any out, it is the istance between two adjacent values, out[i+1] - out[i]. If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data type int32, int64, float32, float64. Default is 1. dtype(str|np.dtype, optional): The data type of the output tensor. Supported data types: int32, int64, float32, float64. If ``dytpe`` is None, the data type is float32. Default is None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A 1-D Tensor with values from the interval [``start``, ``end``) taken with common difference ``step`` beginning from ``start``. Its data type is set by ``dtype``. Raises: TypeError: If ``dtype`` is not int32, int64, float32, float64. Examples: .. code-block:: python import paddle out1 = paddle.arange(5) # [0, 1, 2, 3, 4] out2 = paddle.arange(3, 9, 2.0) # [3, 5, 7] # use 4.999 instead of 5.0 to avoid floating point rounding errors out3 = paddle.arange(4.999, dtype='float32') # [0., 1., 2., 3., 4.] start_var = paddle.to_tensor([3]) out4 = paddle.arange(start_var, 7) # [3, 4, 5, 6] """ if dtype is None: dtype = 'int64' if end is None: end = start start = 0 return paddle.fluid.layers.range(start, end, step, dtype, name) def _tril_triu_op(helper): """Base op of tril_op and triu_op """ op_type = helper.layer_type x = helper.kwargs.get('x', None) assert x is not None, 'x cannot be None in {}'.format(op_type) check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type) if len(x.shape) < 2: raise ValueError("x shape in {} must be at least 2-D".format(op_type)) diagonal = helper.kwargs.get('diagonal', 0) if not isinstance(diagonal, (int, )): raise TypeError("diagonal in {} must be a python Int".format(op_type)) name = helper.kwargs.get('name', None) if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) helper.append_op( type="tril_triu", inputs={"X": x}, attrs={ "diagonal": diagonal, "lower": True if op_type == 'tril' else False, }, outputs={"Out": out}, ) return out def tril(x, diagonal=0, name=None): r""" This op returns the lower triangular part of a matrix (2-D tensor) or batch of matrices :attr:`x`, the other elements of the result tensor are set to 0. The lower triangular part of the matrix is defined as the elements on and below the diagonal. Args: x (Tensor): The input x which is a Tensor. Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Results of lower triangular operation by the specified diagonal of input tensor x, it's data type is the same as x's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`x` is less than 2. Examples: .. code-block:: python import numpy as np import paddle data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) x = paddle.to_tensor(data) tril1 = paddle.tensor.tril(x) # array([[ 1, 0, 0, 0], # [ 5, 6, 0, 0], # [ 9, 10, 11, 0]]) # example 2, positive diagonal value tril2 = paddle.tensor.tril(x, diagonal=2) # array([[ 1, 2, 3, 0], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) # example 3, negative diagonal value tril3 = paddle.tensor.tril(x, diagonal=-1) # array([[ 0, 0, 0, 0], # [ 5, 0, 0, 0], # [ 9, 10, 0, 0]]) """ if in_dygraph_mode(): return _C_ops.final_state_tril_triu(x, diagonal, True) if _in_legacy_dygraph(): op = getattr(_C_ops, 'tril_triu') return op(x, 'diagonal', diagonal, "lower", True) return _tril_triu_op(LayerHelper('tril', **locals())) def triu(x, diagonal=0, name=None): r""" This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices :attr:`x`, the other elements of the result tensor are set to 0. The upper triangular part of the matrix is defined as the elements on and above the diagonal. Args: x (Tensor): The input x which is a Tensor. Support data types: ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Results of upper triangular operation by the specified diagonal of input tensor x, it's data type is the same as x's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`x` is less than 2. Examples: .. code-block:: python import numpy as np import paddle data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) # example 1, default diagonal x = paddle.to_tensor(data) triu1 = paddle.tensor.triu(x) # array([[ 1, 2, 3, 4], # [ 0, 6, 7, 8], # [ 0, 0, 11, 12]]) # example 2, positive diagonal value triu2 = paddle.tensor.triu(x, diagonal=2) # array([[0, 0, 3, 4], # [0, 0, 0, 8], # [0, 0, 0, 0]]) # example 3, negative diagonal value triu3 = paddle.tensor.triu(x, diagonal=-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 0, 10, 11, 12]]) """ if in_dygraph_mode(): return _C_ops.final_state_tril_triu(x, diagonal, False) if _in_legacy_dygraph(): op = getattr(_C_ops, 'tril_triu') return op(x, 'diagonal', diagonal, "lower", False) return _tril_triu_op(LayerHelper('triu', **locals())) def meshgrid(*args, **kwargs): """ This op takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids. Args: *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``. **kwargs (optional): Currently, we only accept name in **kwargs The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk) Examples: .. code-block:: python import paddle x = paddle.randint(low=0, high=100, shape=[100]) y = paddle.randint(low=0, high=100, shape=[200]) grid_x, grid_y = paddle.meshgrid(x, y) print(grid_x.shape) print(grid_y.shape) #the shape of res_1 is (100, 200) #the shape of res_2 is (100, 200) """ if len(args) == 1 and isinstance(args[0], (list, tuple)): args = args[0] if _in_legacy_dygraph(): num = len(args) out = _C_ops.meshgrid(list(args), num) return out if in_dygraph_mode(): return _C_ops.final_state_meshgrid(list(args)) name = kwargs.get("name", None) helper = LayerHelper('meshgrid', **locals()) if not isinstance(args, (list, tuple)): raise TypeError("The type of input args in meshgrid should be list.") for id, input_ in enumerate(args): check_dtype(input_.dtype, 'create data type', ['float16', 'float32', 'float64', 'int32', 'int64'], 'meshgrid') num = len(args) out = [ helper.create_variable_for_type_inference(dtype=args[i].dtype) for i in range(num) ] helper.append_op( type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}) return out def diagflat(x, offset=0, name=None): """ If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned. If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned. The argument ``offset`` controls the diagonal offset. If ``offset`` = 0, it is the main diagonal. If ``offset`` > 0, it is superdiagonal. If ``offset`` < 0, it is subdiagonal. Args: x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64. offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal). name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, a square matrix. The output data type is the same as input data type. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.diagflat(x) print(y.numpy()) # [[1 0 0] # [0 2 0] # [0 0 3]] y = paddle.diagflat(x, offset=1) print(y.numpy()) # [[0 1 0 0] # [0 0 2 0] # [0 0 0 3] # [0 0 0 0]] y = paddle.diagflat(x, offset=-1) print(y.numpy()) # [[0 0 0 0] # [1 0 0 0] # [0 2 0 0] # [0 0 3 0]] .. code-block:: python import paddle x = paddle.to_tensor([[1, 2], [3, 4]]) y = paddle.diagflat(x) print(y.numpy()) # [[1 0 0 0] # [0 2 0 0] # [0 0 3 0] # [0 0 0 4]] y = paddle.diagflat(x, offset=1) print(y.numpy()) # [[0 1 0 0 0] # [0 0 2 0 0] # [0 0 0 3 0] # [0 0 0 0 4] # [0 0 0 0 0]] y = paddle.diagflat(x, offset=-1) print(y.numpy()) # [[0 0 0 0 0] # [1 0 0 0 0] # [0 2 0 0 0] # [0 0 3 0 0] # [0 0 0 4 0]] """ padding_value = 0 if paddle.in_dynamic_mode(): if len(x.shape) == 1: return _C_ops.diag_v2(x, "offset", offset, "padding_value", padding_value) else: y, _ = _C_ops.flatten_contiguous_range(x, "start_axis", 0, "stop_axis", -1) return _C_ops.diag_v2(y, "offset", offset, "padding_value", padding_value) check_type(x, 'x', (Variable), 'diagflat') check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat') check_type(offset, 'offset', (int), 'diagflat') helper = LayerHelper("diagflat", **locals()) out1 = helper.create_variable_for_type_inference(dtype=x.dtype) out1_shape = helper.create_variable_for_type_inference(x.dtype) out2 = helper.create_variable_for_type_inference(dtype=x.dtype) if len(x.shape) == 1: helper.append_op( type='diag_v2', inputs={'X': x}, outputs={'Out': out2}, attrs={'offset': offset, 'padding_value': padding_value}) else: helper.append_op( type='flatten_contiguous_range', inputs={'X': x}, outputs={'Out': out1, 'XShape': out1_shape}, attrs={'start_axis': 0, 'stop_axis': -1}) out1.stop_gradient = True helper.append_op( type='diag_v2', inputs={'X': out1}, outputs={'Out': out2}, attrs={'offset': offset, 'padding_value': padding_value}) out2.stop_gradient = True return out2 def diag(x, offset=0, padding_value=0, name=None): """ If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned. If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned. The argument ``offset`` controls the diagonal offset: If ``offset`` = 0, it is the main diagonal. If ``offset`` > 0, it is superdiagonal. If ``offset`` < 0, it is subdiagonal. Args: x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64. offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, a square matrix or a vector. The output data type is the same as input data type. Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([1, 2, 3]) y = paddle.diag(x) print(y.numpy()) # [[1 0 0] # [0 2 0] # [0 0 3]] y = paddle.diag(x, offset=1) print(y.numpy()) # [[0 1 0 0] # [0 0 2 0] # [0 0 0 3] # [0 0 0 0]] y = paddle.diag(x, padding_value=6) print(y.numpy()) # [[1 6 6] # [6 2 6] # [6 6 3]] .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) y = paddle.diag(x) print(y.numpy()) # [1 5] y = paddle.diag(x, offset=1) print(y.numpy()) # [2 6] y = paddle.diag(x, offset=-1) print(y.numpy()) # [4] """ if in_dygraph_mode(): return _C_ops.final_state_diag(x, offset, padding_value) else: if _in_legacy_dygraph(): return _C_ops.diag_v2(x, "offset", offset, "padding_value", padding_value) else: check_type(x, 'x', (Variable), 'diag_v2') check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diag_v2') check_type(offset, 'offset', (int), 'diag_v2') check_type(padding_value, 'padding_value', (int, float), 'diag_v2') if len(x.shape) != 1 and len(x.shape) != 2: raise ValueError( "The dimension of input x must be either 1 or 2, but received {}". format(len(x.shape))) helper = LayerHelper("diag_v2", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='diag_v2', inputs={'X': x}, outputs={'Out': out}, attrs={'offset': offset, 'padding_value': padding_value}) out.stop_gradient = True return out def empty(shape, dtype=None, name=None): """ This Op returns a Tensor with uninitialized data which size is same as ``shape``. Args: shape(list|tuple|Tensor): Shape of the Tensor to be created. The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Tensor, it should be an 1-D Tensor. dtype(np.dtype|str, optional): Data type of the output Tensor which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data type of created Tensor use global default dtype (see ``get_default_dtype`` for details). name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized. Examples: .. code-block:: python import paddle import numpy as np paddle.set_device("cpu") # and use cpu device # example 1: argument ``shape`` is a list which doesn't contain Tensor. data1 = paddle.empty(shape=[2,3], dtype='float32') #[[4.3612203e+27 1.8176809e+31 1.3555911e-19] # uninitialized # [1.1699684e-19 1.3563156e-19 3.6408321e-11]] # uninitialized # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32. shape_data = np.array([2, 3]).astype('int32') shape = paddle.to_tensor(shape_data) data2 = paddle.empty(shape=shape, dtype='float32') #[[1.7192326e-37 4.8125365e-38 1.9866003e-36] # uninitialized # [1.3284029e-40 7.1117408e-37 2.5353012e+30]] # uninitialized # example 3: argument ``shape`` is a list which contains Tensor. dim2_data = np.array([3]).astype('int32') dim2 = paddle.to_tensor(dim2_data) data3 = paddle.empty(shape=[2, dim2], dtype='float32') #[[1.1024214e+24 7.0379409e+22 6.5737699e-34] # uninitialized # [7.5563101e+31 7.7130405e+31 2.8020654e+20]] # uninitialized """ if dtype is None: dtype = paddle.get_default_dtype() dtype = convert_dtype(dtype) if paddle.in_dynamic_mode(): shape = utils.convert_shape_to_list(shape) out = _C_ops.empty('shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)) out.stop_gradient = True return out helper = LayerHelper("empty", **locals()) inputs = {} check_dtype(dtype, 'dtype', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'empty') check_type(shape, 'shape', (Variable, list, tuple), 'empty') if isinstance(shape, Variable): check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty') attrs = {} utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type='empty') out = helper.create_variable_for_type_inference(dtype=dtype) attrs['dtype'] = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='empty', inputs=inputs, outputs={'Out': [out]}, attrs=attrs, stop_gradient=True) out.stop_gradient = True return out def empty_like(x, dtype=None, name=None): """ This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``. If the ``dtype`` is None, the data type of Tensor is same with ``x``. Args: x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64. dtype(np.dtype|str, optional): The data type of output. The data type can be one of bool, float16, float32, float64, int32, int64. The default value is None, which means the output data type is the same as input. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized. Examples: .. code-block:: python import paddle import numpy as np paddle.set_device("cpu") # and use cpu device x = paddle.randn([2, 3], 'float32') output = paddle.empty_like(x) #[[1.8491974e+20 1.8037303e+28 1.7443726e+28] # uninitialized # [4.9640171e+28 3.0186127e+32 5.6715899e-11]] # uninitialized """ if dtype is None: dtype = x.dtype dtype = convert_dtype(dtype) if paddle.in_dynamic_mode(): out = _C_ops.empty('shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)) out.stop_gradient = True return out helper = LayerHelper("empty_like", **locals()) check_variable_and_dtype( x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'empty_like') check_dtype(dtype, 'dtype', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'empty_like') out = helper.create_variable_for_type_inference(dtype=dtype) inputs = {} attrs = {} attrs['dtype'] = convert_np_dtype_to_dtype_(dtype) shape = paddle.shape(x) utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like') helper.append_op( type='empty', inputs=inputs, outputs={'Out': [out]}, attrs=attrs, stop_gradient=True) out.stop_gradient = True return out def assign(x, output=None): """ The OP copies the :attr:`x` to the :attr:`output`. Parameters: x (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar, or scalar. Its data type supports float16, float32, float64, int32, int64, and bool. Note: the float64 data will be converted to float32 because of current platform protobuf data limitation. output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will be created as :attr:`output`. Default: None. Returns: Tensor: A tensor with the same shape, data type and value as :attr:`x`. Examples: .. code-block:: python import paddle import numpy as np data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] array = np.array([[1, 1], [3, 4], [1, 3]]).astype(np.int64) result1 = paddle.zeros(shape=[3, 3], dtype='float32') paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]] result2 = paddle.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] """ check_type(x, 'x', (Variable, np.ndarray, list, tuple, float, int, bool), 'assign') return tensor.assign(x, output) def clone(x, name=None): """ Returns a copy of input Tensor. It will always have a Tensor copy. In addition, This function is derivable, so gradients will flow back from the output to input. Parameters: x (Tensor): The input Tensor. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor copied from ``input`` . Examples: .. code-block:: python import paddle x = paddle.ones([2]) x.stop_gradient = False clone_x = paddle.clone(x) y = clone_x**3 y.backward() print(clone_x.grad) # [3] print(x.grad) # [3] """ return x.clone() #NOTE(zhiqiu): not public def _memcpy(input, place=None, output=None): """ The OP copies the :attr:`input` to the :attr:`output`. NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace. Parameters: input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool. device (Place): Target place for the output. output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will be created as :attr:`output`. Default: None. Returns: Tensor: A tensor with the same shape, data type and value as :attr:`input`. Examples: .. code-block:: python import paddle import numpy as np data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result = paddle._memcpy(data, place=paddle.CPUPlace()) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] """ helper = LayerHelper('memcpy', **locals()) check_type(input, 'input', (Variable), 'memcpy') if isinstance(input, (Variable, core.VarBase)): check_dtype(input.dtype, 'input', [ 'float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'uint8', 'bool' ], 'memcpy', '(When the type of input in memcpy is Variable.)') if output is None: output = helper.create_variable_for_type_inference(dtype=input.dtype) dst_place_type = -1 if place is None: dst_place_type = -1 else: p = core.Place() p.set_place(place) if p.is_cpu_place(): dst_place_type = 0 elif p.is_gpu_place(): dst_place_type = 1 elif p.is_cuda_pinned_place(): dst_place_type = 2 elif p.is_xpu_place(): dst_place_type = 3 elif p.is_npu_place(): dst_place_type = 4 attrs = {'dst_place_type': dst_place_type} helper.append_op( type='memcpy', inputs={'X': [input]}, outputs={'Out': [output]}, attrs=attrs) return output def complex(real, imag, name=None): """Return a compelx tensor given the real and image component. Args: real (Tensor): The real component. The data type should be 'float32' or 'float64'. imag (Tensor): The image component. The data type should be the same as ``real``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``. **Note**: ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` . Examples: .. code-block:: python import paddle x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1) y = paddle.arange(3, dtype=paddle.float32) z = paddle.complex(x, y) print(z.numpy()) # [[0.+0.j 0.+1.j 0.+2.j] # [1.+0.j 1.+1.j 1.+2.j]] """ if paddle.in_dynamic_mode(): return paddle._C_ops.complex(real, imag) check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex') check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex') op_type = "complex" helper = LayerHelper(op_type, **locals()) inputs = {"X": real, "Y": imag} out = helper.create_variable_for_type_inference( dtype=_real_to_complex_dtype(real.dtype)) outputs = {"Out": out} attrs = {} helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs) return out