# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import re PREFIX_TENSOR_NAME = 'input_' PREFIX_META_TENSOR_NAME = 'meta_' class BaseAPI: def __init__(self, api_item_yaml): self.api = self.get_api_name(api_item_yaml) # inputs: # names : [], list of input names # input_info : {input_name : type} # attrs: # names : [], list of attribute names # attr_info : { attr_name : (type, default_values)} # outputs: # names : [], list of output names # types : [], list of output types # out_size_expr : [], expression for getting size of vector ( self.inputs, self.attrs, self.outputs, self.optional_vars, ) = self.parse_args(self.api, api_item_yaml) self.is_base_api = True self.is_only_composite_api = False if 'invoke' in api_item_yaml: self.is_base_api = False self.invoke = api_item_yaml['invoke'] else: if 'infer_meta' in api_item_yaml: self.infer_meta = self.parse_infer_meta( api_item_yaml['infer_meta'] ) if 'composite' in api_item_yaml and 'kernel' not in api_item_yaml: self.is_base_api = False self.is_only_composite_api = True self.kernel = None else: self.kernel = self.parse_kernel(api_item_yaml['kernel']) self.data_transform = self.parse_data_transform(api_item_yaml) self.inplace_map, self.view_map = {}, {} self.gene_input_func = { "const Tensor&": { "dense": self.gene_dense_input, "selected_rows": self.gene_selected_rows_input, }, "const paddle::optional&": { "dense": self.gene_dense_input, "selected_rows": self.gene_selected_rows_input, }, "const std::vector&": {"dense": self.gene_vec_dense_input}, "const paddle::optional>&": { "dense": self.gene_optional_vec_dense_input }, } def get_api_name(self, api_item_yaml): return api_item_yaml['op'] def get_api_func_name(self): return self.api def get_input_tensor_args(self, inplace_flag=False): input_args = [] inplace_type_map = { "const Tensor&": "Tensor&", "const paddle::optional&": "paddle::optional&", "const std::vector&": "std::vector&", "const paddle::optional>&": "paddle::optional>&", } for name in self.inputs['names']: name = name.split('@')[0] if inplace_flag and name in self.inplace_map.values(): input_args.append( inplace_type_map[self.inputs['input_info'][name]] + ' ' + name ) else: input_args.append(self.inputs['input_info'][name] + ' ' + name) return input_args def get_declare_args(self, inplace_flag=False): declare_args = self.get_input_tensor_args(inplace_flag) for name in self.attrs['names']: default_value = '' if self.attrs['attr_info'][name][1] is not None: default_value = ' = ' + self.attrs['attr_info'][name][1] declare_args.append( self.attrs['attr_info'][name][0] + ' ' + name + default_value ) return ", ".join(declare_args) def get_define_args(self, inplace_flag=False): define_args = self.get_input_tensor_args(inplace_flag) for name in self.attrs['names']: define_args.append(self.attrs['attr_info'][name][0] + ' ' + name) return ", ".join(define_args) def parse_args(self, api_name, api_item_yaml): optional_vars = [] if 'optional' in api_item_yaml: optional_vars = [ item.strip() for item in api_item_yaml['optional'].split(',') ] inputs, attrs = self.parse_input_and_attr( api_name, api_item_yaml['args'], optional_vars ) output_type_list, output_names, out_size_expr = self.parse_output( api_name, api_item_yaml['output'] ) return ( inputs, attrs, { 'names': output_names, 'types': output_type_list, 'out_size_expr': out_size_expr, }, optional_vars, ) def parse_input_and_attr(self, api_name, args_config, optional_vars=[]): inputs = {'names': [], 'input_info': {}} attrs = {'names': [], 'attr_info': {}} args_str = args_config.strip() assert args_str.startswith('(') and args_str.endswith( ')' ), f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml." args_str = args_str[1:-1] patten = re.compile(r',(?![^{]*\})') # support int[] a={1,3} args_list = re.split(patten, args_str.strip()) args_list = [x.strip() for x in args_list] input_types_map = { 'Tensor': 'const Tensor&', 'Tensor[]': 'const std::vector&', } attr_types_map = { 'IntArray': 'const IntArray&', 'Scalar': 'const Scalar&', 'Scalar(int)': 'const Scalar&', 'Scalar(int64_t)': 'const Scalar&', 'Scalar(float)': 'const Scalar&', 'Scalar(dobule)': 'const Scalar&', 'Scalar[]': 'const std::vector&', 'int': 'int', 'int32_t': 'int32_t', 'int64_t': 'int64_t', 'long': 'long', 'size_t': 'size_t', 'float': 'float', 'float[]': 'const std::vector&', 'double': 'double', 'bool': 'bool', 'bool[]': 'const std::vector&', 'str': 'const std::string&', 'str[]': 'const std::vector&', 'Place': 'const Place&', 'DataLayout': 'DataLayout', 'DataType': 'DataType', 'int64_t[]': 'const std::vector&', 'int[]': 'const std::vector&', } optional_types_trans = { 'Tensor': 'const paddle::optional&', 'Tensor[]': 'const paddle::optional>&', 'int': 'paddle::optional', 'int32_t': 'paddle::optional', 'int64_t': 'paddle::optional', 'float': 'paddle::optional', 'double': 'paddle::optional', 'bool': 'paddle::optional', 'Place': 'paddle::optional', 'DataLayout': 'paddle::optional', 'DataType': 'paddle::optional', } for item in args_list: item = item.strip() type_and_name = item.split(' ') # match the input tensor has_input = False for in_type_symbol, in_type in input_types_map.items(): if type_and_name[0] == in_type_symbol: input_name = type_and_name[1].strip() assert ( len(input_name) > 0 ), f"The input tensor name should not be empty. Please check the args of {api_name} in yaml." assert ( len(attrs['names']) == 0 ), f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml" if input_name in optional_vars: in_type = optional_types_trans[in_type_symbol] inputs['names'].append(input_name) inputs['input_info'][input_name] = in_type has_input = True break if has_input: continue # match the attribute for attr_type_symbol, attr_type in attr_types_map.items(): if type_and_name[0] == attr_type_symbol: attr_name = item[len(attr_type_symbol) :].strip() assert ( len(attr_name) > 0 ), f"The attribute name should not be empty. Please check the args of {api_name} in yaml." default_value = None if '=' in attr_name: attr_infos = attr_name.split('=') attr_name = attr_infos[0].strip() default_value = attr_infos[1].strip() if attr_name in optional_vars: attr_type = optional_types_trans[attr_type_symbol] default_value_str = ( "" if default_value is None else '=' + default_value ) attrs['names'].append(attr_name) attrs['attr_info'][attr_name] = (attr_type, default_value) break return inputs, attrs def parse_output(self, api_name, output_config): def parse_output_item(output_item): output_type_map = { 'Tensor': 'Tensor', 'Tensor[]': 'std::vector', } result = re.search( r"(?P[a-zA-Z0-9_[\]]+)\s*(?P\([a-zA-Z0-9_@]+\))?\s*(?P\{[^\}]+\})?", output_item, ) assert ( result is not None ), f"{api_name} : the output config parse error." out_type = result.group('out_type') assert ( out_type in output_type_map ), f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \ but now is {out_type}." out_name = ( 'out' if result.group('name') is None else result.group('name')[1:-1] ) out_size_expr = ( None if result.group('expr') is None else result.group('expr')[1:-1] ) return output_type_map[out_type], out_name, out_size_expr temp_list = output_config.split(',') if len(temp_list) == 1: out_type, out_name, size_expr = parse_output_item(temp_list[0]) return [out_type], [out_name], [size_expr] else: out_type_list = [] out_name_list = [] out_size_expr_list = [] for output_item in temp_list: out_type, out_name, size_expr = parse_output_item(output_item) out_type_list.append(out_type) out_name_list.append(out_name) out_size_expr_list.append(size_expr) return out_type_list, out_name_list, out_size_expr_list def parse_infer_meta(self, infer_meta_config): infer_meta = infer_meta_config if 'param' not in infer_meta_config: infer_meta['param'] = None return infer_meta def parse_kernel(self, kernel_config): # kernel : # func : [], Kernel functions (example: scale, scale_sr) # param : [], Input params of kernel # backend : str, the names of param to choose the kernel backend, default is None # layout : str, the names of param to choose the kernel layout, default is None # data_type : str, the names of param to choose the kernel data_type, default is None # dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)}) kernel = { 'func': [], 'param': None, 'backend': None, 'layout': None, 'data_type': None, 'dispatch': {}, } if 'backend' in kernel_config and len(kernel_config['backend']) > 0: kernel['backend'] = kernel_config['backend'] if 'layout' in kernel_config and len(kernel_config['layout']) > 0: kernel['layout'] = kernel_config['layout'] if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0: kernel['data_type'] = kernel_config['data_type'] if 'param' in kernel_config: kernel['param'] = kernel_config['param'] kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall( kernel_config['func'] ) def parse_kernel_in_out_type(in_out_str): if len(in_out_str) == 0: return None tmp_in_out_list = in_out_str[1:-1].split('->') inputs = [item.strip() for item in tmp_in_out_list[0].split(',')] outputs = [item.strip() for item in tmp_in_out_list[1].split(',')] # check the tensor type for item in inputs: assert item in [ 'dense', 'selected_rows', 'sparse_coo', 'sparse_csr', ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'." for item in outputs: assert item in [ 'dense', 'selected_rows', 'sparse_coo', 'sparse_csr', ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'." return (inputs, outputs) for func_item in kernel_funcs: kernel['func'].append(func_item[0]) kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type( func_item[1] ) return kernel def parse_data_transform(self, api_item_yaml): data_transform = {'skip_transform': [], 'support_trans_dtype': []} if 'data_transform' in api_item_yaml: if 'skip_transform' in api_item_yaml['data_transform']: data_transform['skip_transform'] = api_item_yaml[ 'data_transform' ]['skip_transform'] if 'support_trans_dtype' in api_item_yaml['data_transform']: data_transform['support_trans_dtype'] = api_item_yaml[ 'data_transform' ]['support_trans_dtype'] return data_transform # Override by child class def get_return_type(self, inplace_flag=False): return None def gene_api_declaration(self): api_declaration = "" api_func_name = self.get_api_func_name() if api_func_name[-1] != '_': api_declaration = f""" PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()}); """ if self.is_base_api and len(self.inplace_map) > 0: if api_func_name[-1] != '_': api_func_name += '_' api_declaration = ( api_declaration + f""" PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)}); """ ) return api_declaration # Backward API Override this method def gene_kernel_backend_select(self): backend_select_code = "" if self.kernel['backend'] is not None: if '>' in self.kernel['backend']: vars_list = self.kernel['backend'].split('>') assert ( len(vars_list) == 2 ), f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}." assert (vars_list[0].strip() in self.attrs['names']) and ( self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&' ), f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type." backend_select_code = f""" kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: backend_args = [ ele.strip() for ele in self.kernel['backend'].split(',') ] backend_select_code = f""" kernel_backend = ParseBackend({", ".join(backend_args)}); """ return backend_select_code def gene_kernel_select(self) -> str: api = self.api input_names = self.inputs['names'] attrs = self.attrs kernel = self.kernel kernel_key_item_init = """ Backend kernel_backend = Backend::UNDEFINED; DataLayout kernel_layout = DataLayout::UNDEFINED; DataType kernel_data_type = DataType::UNDEFINED; """ # Check the tensor options attr_backend_count = 0 attr_layout_count = 0 attr_data_type_count = 0 for attr_name in attrs['names']: if attrs['attr_info'][attr_name][0] == 'const Place&': assert ( kernel['backend'] is not None ), f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually." attr_backend_count = attr_backend_count + 1 if attrs['attr_info'][attr_name][0] == 'DataLayout': assert ( kernel['layout'] is not None ), f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually." attr_layout_count = attr_layout_count + 1 if attrs['attr_info'][attr_name][0] == 'DataType': assert ( kernel['data_type'] is not None ), f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually." attr_data_type_count = attr_data_type_count + 1 # preprocess kernel configures kernel_select_code = self.gene_kernel_backend_select() if kernel['layout'] is not None: if '>' in kernel['layout']: vars_list = kernel['layout'].split('>') assert ( len(vars_list) == 2 ), f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}." assert ( vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout' ), f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type." kernel_select_code = ( kernel_select_code + f""" kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ ) else: vars_list = kernel['layout'].split(',') assert ( len(vars_list) == 1 ), f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}." kernel_select_code = ( kernel_select_code + f""" kernel_layout = ParseLayout({vars_list[0].strip()}); """ ) if kernel['data_type'] is not None: def process_data_type_args(args_item): args_item = args_item.strip() complex_match_result = re.match( r"complex\((?P\w+)\)", args_item ) if complex_match_result: return f"phi::dtype::ToComplex(ParseDataType({complex_match_result.group('param_name')}))" else: return f"ParseDataType({args_item})" if '>' in kernel['data_type']: vars_list = kernel['data_type'].split('>') assert ( len(vars_list) == 2 ), f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}." assert ( vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType' ), f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type." kernel_select_code = ( kernel_select_code + f""" kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ ) else: vars_list = kernel['data_type'].split(',') assert ( len(vars_list) == 1 ), f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}." kernel_select_code = ( kernel_select_code + f""" kernel_data_type = {process_data_type_args(vars_list[0])}; """ ) if len(input_names) == 0: assert ( attr_backend_count > 0 and attr_data_type_count > 0 ), f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'." kernel_select_args = "" for input_name in input_names: kernel_select_args = kernel_select_args + input_name + ", " if len(kernel_select_args) > 2: kernel_select_args = kernel_select_args[:-2] kernel_select_code = kernel_key_item_init + kernel_select_code if len(input_names) > 0: kernel_select_code = ( kernel_select_code + f""" if (kernel_backend == Backend::UNDEFINED || kernel_layout == DataLayout::UNDEFINED || kernel_data_type == DataType::UNDEFINED ) {{ auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args}); auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey(); if (kernel_backend == Backend::UNDEFINED) {{ kernel_backend = kernel_key.backend(); }} if (kernel_layout == DataLayout::UNDEFINED) {{ kernel_layout = kernel_key.layout(); }} if (kernel_data_type == DataType::UNDEFINED) {{ kernel_data_type = kernel_key.dtype(); }} }}""" ) return kernel_select_code def gene_infer_meta(self, kernel_output_names, code_indent) -> str: input_names = self.inputs['names'] attr_names = self.attrs['names'] infer_meta = self.infer_meta infer_meta_params = ( infer_meta['param'] if infer_meta['param'] is not None else input_names + attr_names ) # generate meta tensors meta_tensor_code = "" param_code = "" for param in infer_meta_params: if param in input_names: if self.inputs['input_info'][param] == "const Tensor&": param_code = ( param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), " ) elif ( self.inputs['input_info'][param] == "const std::vector&" ): meta_tensor_code = ( meta_tensor_code + f""" {code_indent} auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param}); {code_indent} std::vector {param}_metas({param}_meta_vec.size()); {code_indent} for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{ {code_indent} {param}_metas[i] = &{param}_meta_vec[i]; {code_indent} }} """ ) param_code = param_code + param + "_metas, " elif ( self.inputs['input_info'][param] == "const paddle::optional>&" ): meta_tensor_code = ( meta_tensor_code + f""" {code_indent} auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param}); {code_indent} paddle::optional> {param}_metas({param}_meta_vec.size()); {code_indent} for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{ {code_indent} {param}_metas->at(i) = &{param}_meta_vec[i]; {code_indent} }} """ ) param_code = param_code + param + "_metas, " elif param in self.optional_vars: param_code = ( param_code + "MakeMetaTensor(" + PREFIX_TENSOR_NAME + param + "), " ) else: raise ValueError( f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported." ) elif param in attr_names: param_code = param_code + param + ", " elif isinstance(param, str): param_code = param_code + "\"" + param + "\", " elif isinstance(param, bool): param_code = param_code + str(param).lower() + ", " else: param_code = param_code + str(param) + ", " for i, out_name in enumerate(kernel_output_names): if self.outputs['types'][i] == 'std::vector': meta_tensor_code = ( meta_tensor_code + f""" {code_indent} auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name}); {code_indent} std::vector {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size()); {code_indent} for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{ {code_indent} {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr; {code_indent} }}""" ) param_code = param_code + out_name + '_metas, ' else: meta_tensor_code = ( meta_tensor_code + code_indent + " phi::MetaTensor " + out_name.replace('kernel_', PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n" ) if len(kernel_output_names) == 1: param_code = ( param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, " ) else: param_code = ( param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, " ) param_code = param_code[:-2] return f"""{meta_tensor_code} {code_indent} phi::{infer_meta['func']}({param_code}); """ def gene_trans_flag(self, input_name): trans_flag = "{}" if input_name in self.data_transform['skip_transform']: trans_flag = "{true}" elif input_name in self.data_transform['support_trans_dtype']: trans_flag = "{false, true}" return trans_flag def gene_dense_input( self, input_name, input_name_tensor_map, code_indent='' ): input_tensor_code = "" trans_flag = self.gene_trans_flag(input_name) input_names = self.inputs['names'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names input_name_tensor_map[input_name].append( (f"{PREFIX_TENSOR_NAME}{input_name}", False) ) input_tensor_code = ( input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, GetKernelInputArgDef(kernel.InputAt({kernel_param.index(input_name)}), kernel_backend), {trans_flag});""" ) return input_tensor_code def gene_selected_rows_input( self, input_name, input_name_tensor_map, code_indent='' ): input_tensor_code = "" trans_flag = self.gene_trans_flag(input_name) input_names = self.inputs['names'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names input_name_tensor_map[input_name].append( (f"{PREFIX_TENSOR_NAME}{input_name}", False) ) input_tensor_code = ( input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name} = PrepareDataForSelectedRows({input_name}, GetKernelInputArgDef(kernel.InputAt({kernel_param.index(input_name)}), kernel_backend), {trans_flag}); """ ) return input_tensor_code def gene_optional_vec_dense_input( self, input_name, input_name_tensor_map, code_indent='' ): input_tensor_code = "" trans_flag = self.gene_trans_flag(input_name) input_names = self.inputs['names'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names if input_name in self.inplace_map.values(): input_name_tensor_map[input_name].append( (f"{PREFIX_TENSOR_NAME}{input_name}", True) ) input_tensor_code = ( input_tensor_code + f""" {code_indent} paddle::optional> {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});""" ) else: input_name_tensor_map[input_name].append( (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True) ) input_tensor_code = ( input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, GetKernelInputArgDef(kernel.InputAt({kernel_param.index(input_name)}), kernel_backend), {trans_flag}); {code_indent} paddle::optional> {PREFIX_TENSOR_NAME}{input_name}; {code_indent} if ({PREFIX_TENSOR_NAME}{input_name}_vec){{ {code_indent} {PREFIX_TENSOR_NAME}{input_name} = paddle::optional>({PREFIX_TENSOR_NAME}{input_name}_vec->size()); {code_indent} for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}_vec->size(); ++i) {{ {code_indent} {PREFIX_TENSOR_NAME}{input_name}->at(i) = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i); {code_indent} }} {code_indent} }}""" ) return input_tensor_code def gene_vec_dense_input( self, input_name, input_name_tensor_map, code_indent='' ): input_tensor_code = "" trans_flag = self.gene_trans_flag(input_name) input_names = self.inputs['names'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names if input_name in self.inplace_map.values(): input_name_tensor_map[input_name].append( (f"{PREFIX_TENSOR_NAME}{input_name}", True) ) input_tensor_code = ( input_tensor_code + f""" {code_indent} std::vector {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});""" ) else: input_name_tensor_map[input_name].append( (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True) ) input_tensor_code = ( input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, GetKernelInputArgDef(kernel.InputAt({kernel_param.index(input_name)}), kernel_backend), {trans_flag}); {code_indent} std::vector {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size()); {code_indent} for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{ {code_indent} {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i); {code_indent} }}""" ) return input_tensor_code def gene_input(self, kernel_tensor_type=None, code_indent=''): input_names = self.inputs['names'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names input_name_tensor_map = collections.defaultdict(list) input_tensor_code = "" for i, input_name in enumerate(input_names): # set input code if input_name in kernel_param: # input is dense tensor api_tensor_type = self.inputs['input_info'][input_name] phi_tensor_type = ( 'dense' if kernel_tensor_type is None else kernel_tensor_type[0][kernel_param.index(input_name)] ) if api_tensor_type in self.gene_input_func.keys(): input_tensor_code += self.gene_input_func[api_tensor_type][ phi_tensor_type ](input_name, input_name_tensor_map, code_indent) else: # do nothing pass else: if input_name in self.infer_meta['param']: if input_name in self.optional_vars: input_tensor_code = ( input_tensor_code + f""" {code_indent} paddle::optional {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional(*{input_name}->impl()) : paddle::none;""" ) else: if ( self.inputs['input_info'][input_name] == "const std::vector&" ): input_tensor_code = ( input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name}_uq_ptr = TensorToDenseTensor({input_name}); {code_indent} const auto& {PREFIX_TENSOR_NAME}{input_name} = *{PREFIX_TENSOR_NAME}{input_name}_uq_ptr;""" ) else: input_tensor_code = ( input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();""" ) return input_name_tensor_map, input_tensor_code def get_kernel_args(self, kernel_tensor_type=None, code_indent=''): dense_input_trans_map = { 'const Tensor&': 'const phi::DenseTensor&', 'const std::vector&': 'const std::vector&', 'const paddle::optional': 'paddle::optional', 'const paddle::optional&': 'const paddle::optional&', 'const paddle::optional>&': 'const paddle::optional>&', } dense_out_trans_map = { 'Tensor': 'phi::DenseTensor*', 'std::vector': 'std::vector', } sr_input_trans_map = { 'const Tensor&': 'const phi::SelectedRows&', 'const paddle::optional&': 'const paddle::optional&', } sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'} input_names = self.inputs['names'] input_infos = self.inputs['input_info'] kernel_args_type_list = ['const phi::DeviceContext&'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names input_name_tensor_map, input_tensor_code = self.gene_input( kernel_tensor_type, code_indent ) input_tensor_code = ( input_tensor_code + f""" {code_indent} if(phi::RecordOpInfoSupplement::IsEnabled()){{""" ) single_tensor_names = [] list_tensor_names = [] for input_name, input_tensors in input_name_tensor_map.items(): has_vector_tensor = False for input_tensor, is_vector in input_tensors: if is_vector is True: has_vector_tensor = True if has_vector_tensor is False: single_tensor_names.append(input_name) else: list_tensor_names.append(input_name) if not single_tensor_names: input_tensor_code = ( input_tensor_code + f""" {code_indent} std::vector>> input_shapes;""" ) else: for input_name in single_tensor_names: if input_name in self.optional_vars: input_tensors = input_name_tensor_map[input_name] input_tensor_code = ( input_tensor_code + f""" {code_indent} std::vector {input_name}_record_shapes;""" ) for input_tensor, _ in input_tensors: input_tensor_code = ( input_tensor_code + f""" {code_indent} if({input_tensor}){{ {code_indent} {input_name}_record_shapes.push_back((*{input_tensor}).dims()); {code_indent} }}""" ) input_tensor_code = ( input_tensor_code + f""" {code_indent} std::vector>> input_shapes{{""" ) for input_name in single_tensor_names[:-1]: if input_name in self.optional_vars: input_tensor_code = ( input_tensor_code + f""" {code_indent} {{"{input_name}", {input_name}_record_shapes}},""" ) else: input_tensor_code = ( input_tensor_code + f""" {code_indent} {{"{input_name}", {{""" ) input_tensors = input_name_tensor_map[input_name] for input_tensor, _ in input_tensors[:-1]: input_tensor_code = ( input_tensor_code + f""" {code_indent} (*{input_tensor}).dims(),""" ) input_tensor_code = ( input_tensor_code + f""" {code_indent} (*{input_tensors[-1][0]}).dims()}}}},""" ) if single_tensor_names[-1] in self.optional_vars: input_tensor_code = ( input_tensor_code + f""" {code_indent} {{"{single_tensor_names[-1]}", {code_indent} {single_tensor_names[-1]}_record_shapes}}}};""" ) else: input_tensor_code = ( input_tensor_code + f""" {code_indent} {{"{single_tensor_names[-1]}", {{""" ) input_tensors = input_name_tensor_map[single_tensor_names[-1]] for input_tensor, _ in input_tensors[:-1]: input_tensor_code = ( input_tensor_code + f""" {code_indent} (*{input_tensor}).dims(),""" ) input_tensor_code = ( input_tensor_code + f""" {code_indent} (*{input_tensors[-1][0]}).dims()}}}}}};""" ) if list_tensor_names: input_tensor_code = ( input_tensor_code + f""" {code_indent} std::vector ddims_vec;""" ) for input_name in list_tensor_names: input_tensor_code = ( input_tensor_code + f""" {code_indent} ddims_vec.clear();""" ) for input_tensor, is_vector in input_name_tensor_map[input_name]: if is_vector: input_tensor_truncate = input_tensor[:-4] if input_name in self.inplace_map.values(): input_tensor_truncate = input_tensor if input_name in self.optional_vars: input_tensor_code = ( input_tensor_code + f""" {code_indent} if ({input_tensor_truncate}){{ {code_indent} ddims_vec.reserve({input_tensor_truncate}->size()); {code_indent} for (size_t i = 0; i < {input_tensor_truncate}->size(); ++i) {{ {code_indent} ddims_vec.emplace_back((*{input_tensor_truncate}->at(i)).dims()); {code_indent} }} {code_indent} }}""" ) else: input_tensor_code = ( input_tensor_code + f""" {code_indent} ddims_vec.reserve({input_tensor_truncate}.size()); {code_indent} for (size_t i = 0; i < {input_tensor_truncate}.size(); ++i) {{ {code_indent} ddims_vec.emplace_back((*{input_tensor_truncate}[i]).dims()); {code_indent} }}""" ) else: input_tensor_code = ( input_tensor_code + f""" ddims_vec.emplace_back((*{input_tensor}).dims()); {code_indent} """ ) input_tensor_code = ( input_tensor_code + f""" {code_indent} input_shapes.emplace_back("{input_name}", ddims_vec);""" ) input_tensor_code += f""" {code_indent} phi::AttributeMap attrs;""" for attr_name in self.attrs['names']: if 'IntArray' in self.attrs['attr_info'][attr_name][0]: input_tensor_code += f""" {code_indent} attrs["{attr_name}"] = {attr_name}.GetData();""" elif 'vector' in self.attrs['attr_info'][attr_name][0]: input_tensor_code += f""" {code_indent} attrs["{attr_name}"] = "";""" # TODO(kuizhiqing) elif 'Scalar' in self.attrs['attr_info'][attr_name][0]: input_tensor_code += f""" {code_indent} switch ({attr_name}.dtype()) {{ {code_indent} case DataType::FLOAT32: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::FLOAT64: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::FLOAT16: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::BFLOAT16: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::INT32: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::INT64: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::INT16: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::INT8: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::UINT16: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::UINT8: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::BOOL: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::COMPLEX64: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} case DataType::COMPLEX128: {code_indent} attrs["{attr_name}"] = static_cast({attr_name}.to()); {code_indent} break; {code_indent} default: {code_indent} attrs["{attr_name}"] = ""; {code_indent} break; {code_indent} }}""" elif 'DataType' in self.attrs['attr_info'][attr_name][0]: pass # no need elif 'Place' in self.attrs['attr_info'][attr_name][0]: pass # no need else: input_tensor_code += f""" {code_indent} attrs["{attr_name}"] = {attr_name};""" input_tensor_code = ( input_tensor_code + f""" {code_indent} phi::RecordOpInfoSupplement("{self.api}", input_shapes, attrs); {code_indent} }}""" ) kernel_args = ["*dev_ctx"] for param in kernel_param: if param in input_names: if param in self.optional_vars: kernel_args.append(PREFIX_TENSOR_NAME + param) else: if self.inputs['input_info'][param] == "const Tensor&": kernel_args.append("*" + PREFIX_TENSOR_NAME + param) elif ( self.inputs['input_info'][param] == "const std::vector&" ): kernel_args.append(PREFIX_TENSOR_NAME + param) else: # do nothing pass # input is dense tensor if ( kernel_tensor_type is None or kernel_tensor_type[0][kernel_param.index(param)] == 'dense' ): kernel_args_type_list.append( dense_input_trans_map[input_infos[param]] ) else: # input is selected_rows kernel_args_type_list.append( sr_input_trans_map[input_infos[param]] ) elif param in attr_names: # set attr for kernel_context if 'IntArray' in self.attrs['attr_info'][param][0]: kernel_args_type_list.append('const phi::IntArray&') param = 'phi::IntArray(' + param + ')' elif 'vector' in self.attrs['attr_info'][param][0]: kernel_args_type_list.append( 'const std::vector&' ) param = param elif 'Scalar' in self.attrs['attr_info'][param][0]: kernel_args_type_list.append('const phi::Scalar&') param = 'phi::Scalar(' + param + ')' else: kernel_args_type_list.append( self.attrs['attr_info'][param][0] ) kernel_args.append(param) elif isinstance(param, bool): kernel_args.append(str(param).lower()) else: kernel_args.append(str(param)) for i, out_type in enumerate(self.outputs['types']): # output is dense tensor if ( kernel_tensor_type is None or kernel_tensor_type[1][i] == 'dense' ): kernel_args_type_list.append(dense_out_trans_map[out_type]) else: # output is selected_rows kernel_args_type_list.append(sr_out_trans_map[out_type]) kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")" return input_tensor_code, ", ".join(kernel_args), kernel_signature # Override by child class def gene_return_code(self): return "return api_output;" # Override by child class def gene_output( self, out_dtype_list, out_tensor_type_list=None, code_indent='', inplace_flag=False, ): return None, None, None def reset_view_after_fallback( self, out_dtype_list, code_indent='', inplace_flag=False ): return '' def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False): kernel_dispatch = self.kernel['dispatch'][kernel_name] input_tensors, kernel_args, kernel_signature = self.get_kernel_args( kernel_dispatch, code_indent ) out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None outputs_args, kernel_output_names, output_create = self.gene_output( self.outputs['types'], out_tensor_type_list, code_indent, inplace_flag, ) fallback_kernel_output_trans = "" for kernel_out in outputs_args: fallback_kernel_output_trans += f""" {code_indent} TransDataBackend({kernel_out}, kernel_backend, {kernel_out});""" return f""" {code_indent} VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; {code_indent} auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError( {code_indent} "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}}); {code_indent} const auto& kernel = kernel_result.kernel; {code_indent} if (FLAGS_low_precision_op_list) {{ {code_indent} phi::KernelFactory::Instance().AddToLowPrecisionKernelList("{self.api}", kernel_data_type); {code_indent} }} {code_indent} VLOG(6) << "{kernel_name} kernel: " << kernel; {code_indent} auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend); {input_tensors} {output_create} {code_indent} phi::RecordEvent *infer_shape_record_event = nullptr; {code_indent} if(phi::RecordEvent::IsEnabled()){{ {code_indent} infer_shape_record_event = new phi::RecordEvent(\"{self.api} infer_meta\", phi::TracerEventType::OperatorInner, 1); {code_indent} }} {self.gene_infer_meta(kernel_output_names, code_indent)} {code_indent} if(infer_shape_record_event != nullptr){{ {code_indent} delete infer_shape_record_event; {code_indent} }} {code_indent} using kernel_signature = {kernel_signature}; {code_indent} auto* kernel_fn = kernel.GetVariadicKernelFn(); {code_indent} phi::RecordEvent* kernel_record_event = nullptr; {code_indent} if(phi::RecordEvent::IsEnabled()){{ {code_indent} kernel_record_event = new phi::RecordEvent(\"{self.api} compute\", phi::TracerEventType::OperatorInner, 1); {code_indent} }} {code_indent} (*kernel_fn)({kernel_args}, {", ".join(outputs_args)}); {code_indent} if(kernel_record_event != nullptr){{ {code_indent} delete kernel_record_event; {code_indent} }} {code_indent} if (kernel_result.has_fallback_cpu) {{ {fallback_kernel_output_trans} {self.reset_view_after_fallback(self.outputs['types'], code_indent, inplace_flag)} {code_indent} }} {code_indent} {self.gene_return_code()}""" def get_condition_code(self, kernel_name): assert self.kernel['dispatch'][ kernel_name ], f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in ops.yaml." input_types = self.kernel['dispatch'][kernel_name][0] condition_list = [] for i, in_type in enumerate(input_types): if in_type == "dense": if self.inputs['names'][i] in self.optional_vars: condition_list.append( f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())" ) else: condition_list.append( f"{self.inputs['names'][i]}.is_dense_tensor()" ) else: if self.inputs['names'][i] in self.optional_vars: condition_list.append( f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())" ) else: condition_list.append( f"{self.inputs['names'][i]}.is_selected_rows()" ) return " && ".join(condition_list) def gene_dispatch_code(self, kernel_name, inplace_flag=False): return f""" if ({self.get_condition_code(kernel_name)}) {{ {self.gen_kernel_code(kernel_name, ' ', inplace_flag)} }} """ def gen_dist_tensor_code(self): # define the DistTensorSpec vector for input and output tensors api_code = " \n std::vector input_specs;\n" # get DistTensorSpec for each input tensor for tensor_name in self.inputs['names']: api_code += f" input_specs.emplace_back(paddle::distributed::auto_parallel::DistTensorSpec({tensor_name}));\n" api_code += "\n" return api_code def gene_base_api_code(self, inplace_flag=False): api_func_name = self.get_api_func_name() if inplace_flag and api_func_name[-1] != '_': api_func_name += '_' api_code = f""" PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{ {self.gene_kernel_select()} """ # if api_func_name == 'matmul': # api_code += self.gen_dist_tensor_code() if len(self.kernel['func']) > 1: kernel_dispatch_code = '' for kernel_name in self.kernel['func']: kernel_dispatch_code += self.gene_dispatch_code( kernel_name, inplace_flag ) return ( api_code + f""" {kernel_dispatch_code} PADDLE_THROW(phi::errors::Unimplemented( "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors.")); }} """ ) else: return ( api_code + self.gen_kernel_code(self.kernel['func'][0], '', inplace_flag) + """ } """ ) def gene_invoke_code(self, invoke_code, params_code): return f""" PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{ return {invoke_code}; }}""" def gene_api_code(self): if self.is_base_api: api_code = self.gene_base_api_code() if len(self.inplace_map) > 0: if self.api[-1] == '_': api_code = "" api_code = api_code + self.gene_base_api_code(inplace_flag=True) return api_code elif self.is_only_composite_api: # for composite and invoke api, dygraph use prim::xxx_grad method return '' else: invoke_code = self.invoke params_code = self.get_define_args() return self.gene_invoke_code(invoke_code, params_code)