// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/matmul_kernel.h" #include "paddle/phi/kernels/reduce_sum_kernel.h" #include "paddle/phi/kernels/transpose_kernel.h" #include "paddle/utils/string/string_helper.h" DECLARE_bool(einsum_opt); namespace phi { // check the validation of the Einsum equation. // 1. the label must between 'a' - 'z'. // 2. the dim of the same label must be same. // 3. the broad cast dims in two operands is broadcastable. // 4. there must exist '->' and the default output is complete in python. // may be we can skip validation check in C++ and just put it in python. inline static void ValidationCheck(const std::string& equation) { auto n_part = paddle::string::split_string(equation, "->").size(); PADDLE_ENFORCE_EQ(n_part, 2, phi::errors::InvalidArgument( "Required at least one `->` in equation of EinsumOp.")); size_t pos; auto trimed_equ = equation; if ((pos = trimed_equ.find("->", 0)) != std::string::npos) { trimed_equ.replace(pos, 2, "."); } auto is_valid_char = [](char c) { if (c >= 'a' && c <= 'z') return true; if (c == '.' || c == ',') return true; return false; }; for (auto c : trimed_equ) { if (!is_valid_char(c)) PADDLE_THROW(phi::errors::InvalidArgument( "Found invalid char in equation. Einsum only accept `a`-`z` and `...`" "but get:`%c`", c)); } } enum LabelType { ALL_TYPE = 0, Batch = 1, // ABO AO, // AO -- free label BO, // BO -- free label Contraction, // AB Reduction, // A, B }; // map a label('a' - 'z') -> int, O(1) speed. class LabelMap { constexpr static int N = 26 + 1; // 'a' - 'z' + '.', '.' is for broadcast dims int default_value; int map[N]; public: explicit LabelMap(int default_value = 0) { this->default_value = default_value; for (int i = 0; i < N; ++i) map[i] = default_value; } int& operator[](int label) { int i = label - 'a'; if (label == '.') i = N - 1; return map[i]; } int operator[](int label) const { int i = label - 'a'; if (label == '.') i = N - 1; return map[i]; } // non-exist is present by is_default bool is_default(char label) { return (*this)[static_cast(label)] == default_value; } }; inline std::string label_to_string(const std::vector& all_labels, const LabelMap& label2type) { std::string str; for (int a : all_labels) { std::stringstream ss; ss << label2type[a]; str += ss.str(); } return str; } inline static void ReplaceEllipsis(std::string& s) { // NOLINT size_t pos; if ((pos = s.find("...", 0)) != std::string::npos) { s.replace(pos, 3, "."); } // remove all the space in the expression while ((pos = s.find(" ", 0)) != std::string::npos) { s.replace(pos, 1, ""); } } inline std::vector union_labels(const std::vector& a, const std::vector& b) { LabelMap counter(0); std::vector res; auto f = [&](char c) { if (counter[static_cast(c)] == 0) { res.push_back(c); } counter[static_cast(c)] += 1; }; std::for_each(a.begin(), a.end(), f); std::for_each(b.begin(), b.end(), f); return res; } // Apply transforms to all_labels and get another all_labels inline std::vector TransformLabelsOrder( const std::vector& all_labels, const LabelMap& type, std::vector new_order) { std::vector ret; for (auto cnt_type : new_order) { std::vector tmp; for (int c : all_labels) { if (type[c] == cnt_type) tmp.push_back(c); } ret.insert(ret.end(), tmp.begin(), tmp.end()); } return ret; } inline static void GlobalInfo(const std::vector& op_labels, const std::string& right, LabelMap* label2type, std::vector* sorted_labels) { std::vector all; LabelMap counter(0); for (auto& ch : right) { // char int c = ch; (*label2type)[c] = LabelType::BO; } for (auto& op : op_labels) { for (auto& ch : op) { // char int c = ch; if (counter.is_default(c)) { all.push_back(ch); } counter[c] += 1; if ((*label2type)[c] != LabelType::BO && counter[c] == 2) (*label2type)[c] = LabelType::Contraction; else if (counter[c] == 2) (*label2type)[c] = LabelType::Batch; } } // BO is represent Free, so we need find the AO. for (int c : op_labels[0]) { if ((*label2type)[c] == LabelType::BO) (*label2type)[c] = LabelType::AO; } (*label2type)['.'] = LabelType::Batch; if (sorted_labels->size()) { std::set exist(all.begin(), all.end()); all.clear(); std::for_each( sorted_labels->begin(), sorted_labels->end(), [&exist, &all](char c) { if (exist.count(c)) all.push_back(c); }); } *sorted_labels = TransformLabelsOrder(all, *label2type, {LabelType::Batch, LabelType::AO, LabelType::BO, LabelType::Contraction, LabelType::Reduction}); if (counter[static_cast('.')] > 0) { std::vector tmp; tmp.push_back('.'); // push '.' in the front *sorted_labels = union_labels(tmp, *sorted_labels); } VLOG(5) << "GlobalInfo: sorted_labels after: " << paddle::string::join_strings(*sorted_labels, ","); } inline static void InferLabelShape(const std::vector& op_labels, const std::vector& inputs, LabelMap* labelshape, std::vector>* ellipsis_dims, std::vector* broadcast_dims) { VLOG(5) << "Start InferLabelShape"; int n_broadcast_dims = 0; for (size_t i = 0; i < op_labels.size(); ++i) { VLOG(5) << "oplabels: " << op_labels[i]; int valid_indices = std::count_if(op_labels[i].begin(), op_labels[i].end(), [](char c) { return c != '.'; }); int n_ellipsis = inputs[i].size() - valid_indices; VLOG(5) << "valid indices and n_ellipsis: " << valid_indices << " " << n_ellipsis; ellipsis_dims->at(i).resize(n_ellipsis); n_broadcast_dims = std::max(n_broadcast_dims, n_ellipsis); } VLOG(5) << "InferLabelShape: Broadcast ndims:" << n_broadcast_dims; *broadcast_dims = std::vector(n_broadcast_dims, 1); for (size_t i = 0; i < op_labels.size(); ++i) { auto& op_str = op_labels[i]; auto& op_dim = inputs[i]; int dim_ptr = 0; for (int c : op_str) { if (c == '.') { for (auto& v : ellipsis_dims->at(i)) { v = op_dim[dim_ptr]; dim_ptr++; } } else if (labelshape->is_default(c) || (*labelshape)[c] == -1) { (*labelshape)[c] = op_dim[dim_ptr]; dim_ptr++; } else { PADDLE_ENFORCE_EQ( (*labelshape)[c], op_dim[dim_ptr], phi::errors::InvalidArgument( "Same label have different shapes for label: `%c`", c)); dim_ptr++; } } } for (size_t i = 0; i < op_labels.size(); ++i) { VLOG(5) << "InferLabelShape: Ellipsis ndims:" << paddle::string::join_strings(ellipsis_dims->at(i), ","); int idx = n_broadcast_dims - ellipsis_dims->at(i).size(); for (auto v : ellipsis_dims->at(i)) { PADDLE_ENFORCE_EQ( v == 1 || broadcast_dims->at(idx) == 1 || broadcast_dims->at(idx) == v, true, phi::errors::InvalidArgument( "Ellipsis dims can't broadcasts. Please Check you operands.")); broadcast_dims->at(idx) = std::max(v, broadcast_dims->at(idx)); idx += 1; } } VLOG(5) << "InferLabelShape: Broadcast dims:" << paddle::string::join_strings(*broadcast_dims, ","); } inline static void InferLabelPerm(const std::string& op, int n_broadcast, LabelMap* label2perm) { int cur = 0; for (int c : op) { (*label2perm)[c] = cur; if (c == '.') { cur += n_broadcast; } else { cur += 1; } } } inline static void InferOutputDims(const std::string& right, const std::vector& broadcast_dims, const LabelMap& labelshape, std::vector* output_dims) { for (int c : right) { if (c == '.') { output_dims->insert( output_dims->end(), broadcast_dims.begin(), broadcast_dims.end()); } else { output_dims->push_back(labelshape[c]); } } } // inline static void ParseEinsumEquation( const std::string& equation, const std::vector& inputs, LabelMap* labelshape, LabelMap* labeltype, std::vector* all_labels, std::vector* label2perms, std::vector>* ellipsis_dims, std::vector* broadcast_dims, std::vector* output_dims, std::string* right) { auto results = paddle::string::split_string(equation, "->"); auto left = results[0]; ReplaceEllipsis(left); *right = results[1].substr(1); ReplaceEllipsis(*right); auto op_labels = paddle::string::split_string(left, ","); // split_string("i,") -> ["i"], we expect 2 op_labels. if (left[left.size() - 1] == ',') op_labels.push_back(""); std::for_each(op_labels.begin(), op_labels.end(), ReplaceEllipsis); GlobalInfo(op_labels, *right, labeltype, all_labels); InferLabelShape(op_labels, inputs, labelshape, ellipsis_dims, broadcast_dims); VLOG(5) << "Einsum Infershape: right:" << *right; VLOG(5) << "Einsum Infershape: left :" << paddle::string::join_strings(op_labels, '\n'); InferOutputDims(*right, *broadcast_dims, *labelshape, output_dims); for (size_t i = 0; i < inputs.size(); ++i) { InferLabelPerm( op_labels[i], ellipsis_dims->at(i).size(), &((*label2perms)[i])); } VLOG(5) << "Einsum Infershape: end"; } template std::vector GetLabelIndexByType(const std::vector& all_labels, const LabelMap& type, const LabelMap& perm, const std::vector& ellipsis, LabelType filter) { std::vector res; for (T c : all_labels) { if ((filter == LabelType::ALL_TYPE || type[c] == filter) && perm[c] != -1) { if (c == '.') { for (size_t i = 0; i < ellipsis.size(); ++i) res.push_back(perm[c] + i); } else { res.push_back(perm[c]); } } } return res; } template std::vector GetShapeByType(const std::vector& all_labels, const LabelMap& type, const LabelMap& perm, const LabelMap& label2shape, const std::vector& ellipsis, std::set filter) { std::vector res; for (T c : all_labels) { if ((filter.count(LabelType::ALL_TYPE) || filter.count(LabelType(type[c]))) && perm[c] != -1) { if (c == '.') res.insert(res.end(), ellipsis.begin(), ellipsis.end()); else res.push_back(label2shape[c]); } } return res; } template DenseTensor PerformReduction(const Context& dev_ctx, const DenseTensor& tensor, const LabelMap& label2perm, const std::vector& all_labels, const std::vector& ellipsis, const LabelMap& label2type) { auto indices = GetLabelIndexByType( all_labels, label2type, label2perm, ellipsis, LabelType::Reduction); VLOG(5) << "call PerformReduction: with axis: " << paddle::string::join_strings(indices, ","); if (indices.size() == 0) return tensor; return Sum(dev_ctx, tensor, indices, tensor.dtype(), true); } inline bool is_no_need_transpose(const std::vector& axis) { for (size_t i = 0; i < axis.size(); ++i) { if (i != static_cast(axis[i])) return false; } return true; } template DenseTensor PerformTranspose(const Context& dev_ctx, const DenseTensor& tensor, const LabelMap& label2perm, const std::vector& all_labels, const std::vector& ellipsis, const LabelMap& label2type) { auto axis = GetLabelIndexByType( all_labels, label2type, label2perm, ellipsis, LabelType::ALL_TYPE); VLOG(5) << "PerformTranspose: " << paddle::string::join_strings(axis, ","); if (is_no_need_transpose(axis)) { return tensor; } auto ret = Transpose(dev_ctx, tensor, axis); VLOG(5) << "PerformTranspose: do_transpose()"; return ret; } template DenseTensor PerformContraction( const Context& dev_ctx, const DenseTensor& A, const DenseTensor& B, const std::vector& label2perm, const std::vector& all_labels, const LabelMap& label2type, const LabelMap& label2shape, const std::vector>& ellipsis_dims, const std::vector& broadcast_dims, std::vector cache, bool use_cache) { // Get All the Batches, so perm is auto all_valid = LabelMap(1); auto recover_dim = GetShapeByType(all_labels, label2type, all_valid, label2shape, broadcast_dims, {LabelType::Batch}); auto preprocess = [&](const DenseTensor& t, const LabelMap& perm, const std::vector& ellipsis, int operand_idx) -> DenseTensor { // reshape auto frees = GetShapeByType(all_labels, label2type, perm, label2shape, ellipsis, {LabelType::AO, LabelType::BO}); auto conts = GetShapeByType(all_labels, label2type, perm, label2shape, ellipsis, {LabelType::Contraction}); std::vector reordered_all_labels = all_labels; if (operand_idx == 1) { reordered_all_labels = TransformLabelsOrder(all_labels, label2type, {LabelType::Batch, LabelType::Contraction, LabelType::AO, LabelType::BO, LabelType::Reduction}); } // reduction DenseTensor trans_t; if (use_cache && cache[operand_idx] != nullptr && cache[operand_idx]->IsInitialized()) { trans_t.ShareBufferWith(*(cache[operand_idx])); VLOG(5) << "Cache Used!"; } else { auto reduct_t = PerformReduction( dev_ctx, t, perm, all_labels, ellipsis, label2type); trans_t = PerformTranspose( dev_ctx, reduct_t, perm, reordered_all_labels, ellipsis, label2type); if (cache[operand_idx] != nullptr) cache[operand_idx]->ShareBufferWith(trans_t); } auto mul_dims = GetShapeByType(all_labels, label2type, perm, label2shape, ellipsis, {LabelType::Batch}); recover_dim.insert(recover_dim.end(), frees.begin(), frees.end()); if (operand_idx == 0) { mul_dims.push_back(std::accumulate( frees.begin(), frees.end(), 1, std::multiplies())); mul_dims.push_back(std::accumulate( conts.begin(), conts.end(), 1, std::multiplies())); } else { mul_dims.push_back(std::accumulate( conts.begin(), conts.end(), 1, std::multiplies())); mul_dims.push_back(std::accumulate( frees.begin(), frees.end(), 1, std::multiplies())); } VLOG(5) << "PerformContraction: mul_dims: " << paddle::string::join_strings(mul_dims, ","); trans_t.Resize(make_ddim(mul_dims)); return trans_t; }; // Reduction, Reshape and Matmul auto trans_a = preprocess(A, label2perm[0], ellipsis_dims[0], 0); auto trans_b = preprocess(B, label2perm[1], ellipsis_dims[1], 1); auto after_contraction = Matmul(dev_ctx, trans_a, trans_b, false, false); VLOG(5) << "PerformContraction: recover_dim: " << paddle::string::join_strings(recover_dim, ","); after_contraction.Resize(make_ddim(recover_dim)); return after_contraction; } template void TransposeToOutput(const Context& dev_ctx, const DenseTensor& to_trans, const std::string& right, const std::vector& all_labels, int n_broadcast_dims, DenseTensor* output) { std::vector axis; int offset = 0; if (std::find(all_labels.begin(), all_labels.end(), '.') != all_labels.end()) { offset = n_broadcast_dims - 1; } for (char c : right) { if (c == '.') { for (int i = 0; i < n_broadcast_dims; ++i) axis.push_back(i); } else { auto it = std::find(all_labels.begin(), all_labels.end(), c); PADDLE_ENFORCE_NE(it, all_labels.end(), phi::errors::InvalidArgument("Must in all_labels.")); axis.push_back(it - all_labels.begin() + offset); } } if (is_no_need_transpose(axis)) { output->ShareBufferWith(to_trans); return; } VLOG(5) << "call TransposeToOutput: with axis: " << paddle::string::join_strings(axis, ","); TransposeKernel(dev_ctx, to_trans, axis, output); } template void EinsumKernelImpl(const Context& dev_ctx, const std::vector& forward_all_labels, const std::vector& inputs, const std::string& equation, DenseTensor* out, std::vector cache, bool is_forward = true) { ValidationCheck(equation); // collect the following informations to prepare einsum. LabelMap labelshape(0); LabelMap labeltype(LabelType::Reduction); std::vector label2perms(inputs.size(), LabelMap(-1)); std::vector all_labels; // order: ABO, AO, BO, AB, Reduce std::vector> ellipsis_dims(2); std::vector broadcast_dims; std::vector output_dims; std::vector input_dims; for (auto& i : inputs) { input_dims.push_back(i->dims()); } std::string right; if (!is_forward) { all_labels = forward_all_labels; } ParseEinsumEquation(equation, input_dims, &labelshape, &labeltype, &all_labels, &label2perms, &ellipsis_dims, &broadcast_dims, &output_dims, &right); out->Resize(make_ddim(output_dims)); if (inputs.size() == 2) { auto& A = inputs[0]; auto& B = inputs[1]; // Reduction and Contract Procedure auto after_contraction = PerformContraction(dev_ctx, *A, *B, label2perms, all_labels, labeltype, labelshape, ellipsis_dims, broadcast_dims, cache, !is_forward); TransposeToOutput(dev_ctx, after_contraction, right, all_labels, broadcast_dims.size(), out); // Reshape Procedure } else if (inputs.size() == 1) { if (cache[0] != nullptr) { // For compatibility, may be cache is nullptr if // loading the program from v2.3.0 (*cache[0]) = *(inputs[0]); // ShareBuffer for backward, because backward // we can only see cached tensor. } auto reduce_A = PerformReduction(dev_ctx, *inputs[0], label2perms[0], all_labels, ellipsis_dims[0], labeltype); std::vector right_labels; for (auto c : right) right_labels.push_back(c); right_labels = union_labels(right_labels, all_labels); *out = PerformTranspose(dev_ctx, reduce_A, label2perms[0], right_labels, broadcast_dims, labeltype); out->Resize(make_ddim(output_dims)); } else { PADDLE_THROW(phi::errors::InvalidArgument( "EinsumOp kernel only support len(operands) between (0, 2]. Use " "opt_einsum first to convert multi-variable to binary-variable.")); } } template void EinsumKernelRaw(const Context& dev_ctx, const std::vector& inputs, const std::string& equation, DenseTensor* out, std::vector cache, std::vector xshape) { std::vector tmp; // for the sake of compatibility, we may load and run v2.3 EinsumOp. Output // may have nullptr and the cache.size() is not equal to inputs.size(). refer // to BuildPhiKernelContext for details. int diff = inputs.size() - cache.size(); for (int i = 0; i < diff; ++i) { cache.push_back(nullptr); } EinsumKernelImpl( dev_ctx, tmp, inputs, equation, out, cache, /*forward=*/true); } template void EinsumKernel(const Context& dev_ctx, const std::vector& inputs, const std::string& equation, DenseTensor* out) { std::vector place_holder; std::vector cache_tensor( inputs.size()); // set empty; TA, TB, TdC for (size_t i = 0; i < inputs.size(); ++i) { cache_tensor[i] = nullptr; } EinsumKernelImpl( dev_ctx, place_holder, inputs, equation, out, cache_tensor, true); } } // namespace phi