// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/backends/onednn/onednn_helper.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/core/expect.h" #include "paddle/phi/kernels/cpu/conv_util.h" namespace phi { namespace onednn { inline funcs::OneDNNMemoryFormat GetWeightsFormat(int groups, bool is_conv3d) { if (is_conv3d) { return (groups == 1) ? funcs::OneDNNMemoryFormat::oidhw : funcs::OneDNNMemoryFormat::goidhw; } else { return (groups == 1) ? funcs::OneDNNMemoryFormat::oihw : funcs::OneDNNMemoryFormat::goihw; } } template class ConvOneDNNHandlerT : public funcs::OneDNNHandlerT { public: ConvOneDNNHandlerT(const OneDNNContext& dev_ctx, const dnnl::engine onednn_engine, Place cpu_place, const phi::DenseTensor* input, const phi::DenseTensor* filter, const phi::DenseTensor* bias, const std::vector& strides_in, const std::vector& paddings_in, const std::string& padding_algorithm, const std::vector& dilations_in, int groups, const std::string& data_format, bool is_test, bool is_BFLOAT16, const std::string& fuse_activation, bool fuse_residual_conn, bool force_fp32_output, phi::DenseTensor* output, const std::string& unique_name) : funcs::OneDNNHandlerT( dev_ctx, onednn_engine, cpu_place, funcs::CreateKey( dev_ctx, phi::vectorize(input->dims()), unique_name)) { if (unlikely(!this->isCached())) { PADDLE_ENFORCE_EQ( input->layout(), DataLayout::ONEDNN, phi::errors::InvalidArgument( "The input tensor's layout should be %d, but got %d.", DataLayout::ONEDNN, input->layout())); PADDLE_ENFORCE_EQ( filter->layout(), DataLayout::ONEDNN, phi::errors::InvalidArgument( "The Filter tensor's layout should be %d, but got %d.", DataLayout::ONEDNN, filter->layout())); PADDLE_ENFORCE_GE( input->dims().size(), 4, phi::errors::InvalidArgument( "Input must be with 4 or 5 dimensions, i.e. NCHW or " "NCDHW, but got dimension = %d .", input->dims().size())); PADDLE_ENFORCE_LE( input->dims().size(), 5, phi::errors::InvalidArgument( "Input must be with 4 or 5 dimensions, i.e. NCHW or " "NCDHW, but got dimension = %d .", input->dims().size())); PADDLE_ENFORCE_GE( filter->dims().size(), 4, phi::errors::InvalidArgument( "Filter must be with 4 or 5 dimensions, i.e. OIHW or " "OIDHW, but got dimension = %d .", filter->dims().size())); PADDLE_ENFORCE_LE( filter->dims().size(), 5, phi::errors::InvalidArgument( "Filter must be with 4 or 5 dimensions, i.e. OIHW or " "OIDHW, but got dimension = %d .", filter->dims().size())); if (bias) { PADDLE_ENFORCE_EQ( bias->layout(), DataLayout::ONEDNN, phi::errors::InvalidArgument( "The Bias tensor's layout should be %d, but got %d.", DataLayout::ONEDNN, bias->layout())); PADDLE_ENFORCE_EQ( bias->dims().size(), 1, phi::errors::InvalidArgument("Bias must only have 1 dimension, " "i.e. X, but got dimension = %d .", bias->dims().size())); } const auto input_dims = input->dims(); const auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size()); const auto filter_dims = filter->dims(); const auto filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size()); const auto ksize = phi::vectorize(filter_data_dims); std::vector strides(begin(strides_in), end(strides_in)); std::vector paddings(begin(paddings_in), end(paddings_in)); std::vector dilations(begin(dilations_in), end(dilations_in)); UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, data_dims, strides, ksize); std::transform( dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) { return i - 1; }); const auto src_tz = phi::vectorize(input->dims()); auto weights_tz = phi::vectorize(filter->dims()); funcs::GetGroupConvWeightsTz(weights_tz, groups); const auto dst_tz = phi::vectorize(output->dims()); const dnnl::memory::dims stride_dims = strides; const auto onednn_paddings = funcs::ToOneDNNPadding(paddings); const dnnl::memory::dims dilations_dims = dilations; /* create memory descriptor for convolution without specified format * ('any') which lets a primitive (convolution in this case) choose * the memory format preferred for best performance */ auto chosen_memory_format = funcs::OneDNNMemoryFormat::any; auto data_type = dnnl::memory::data_type::f32; if (is_BFLOAT16 || std::is_same::value) { data_type = dnnl::memory::data_type::bf16; } dnnl::memory::desc src_md, weights_md; if (funcs::is_int8()) { src_md = funcs::OneDNNMemDesc(src_tz, funcs::ToOneDNNDataType(input->dtype()), chosen_memory_format); weights_md = funcs::OneDNNMemDesc( weights_tz, dnnl::memory::data_type::s8, chosen_memory_format); } else { src_md = funcs::OneDNNMemDesc(src_tz, data_type, chosen_memory_format); weights_md = funcs::OneDNNMemDesc( weights_tz, data_type, funcs::OneDNNMemoryFormat::any); } const auto dst_md = funcs::OneDNNMemDesc( dst_tz, funcs::OneDNNGetDataType(), chosen_memory_format); const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference : dnnl::prop_kind::forward_training; const dnnl::primitive_attr conv_attr = CreateConvAttrs(filter, groups, force_fp32_output, fuse_residual_conn, fuse_activation); if (bias) { auto bias_tz = phi::vectorize(bias->dims()); dnnl::memory::desc bias_md; if (funcs::is_int8()) { bias_md = funcs::OneDNNMemDesc(bias_tz, dnnl::memory::data_type::s32, funcs::OneDNNMemoryFormat::x); } else { bias_md = funcs::OneDNNMemDesc( bias_tz, data_type, funcs::OneDNNMemoryFormat::x); } this->AcquireForwardPrimitiveDescriptor( conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims, onednn_paddings[0], onednn_paddings[1]); } else { this->AcquireForwardPrimitiveDescriptor( conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md, stride_dims, dilations_dims, onednn_paddings[0], onednn_paddings[1]); } } } ConvOneDNNHandlerT(const OneDNNContext& dev_ctx, Place cpu_place, const phi::DenseTensor* in, const phi::DenseTensor* filter, const phi::DenseTensor* bias, const phi::DenseTensor* out_grad, const std::vector& strides_in, const std::vector& paddings_in, const std::string& padding_algorithm, const std::vector& dilations_in, int groups, const std::string& data_format, bool is_test, phi::DenseTensor* filter_grad, phi::DenseTensor* in_x_grad, const std::string& unique_name) : funcs::OneDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, funcs::CreateKey( dev_ctx, phi::vectorize(in->dims()), unique_name)) { if (unlikely(!this->isBwdCached())) { PADDLE_ENFORCE_EQ( in->layout(), DataLayout::ONEDNN, phi::errors::InvalidArgument( "The input tensor's layout should be %d, but got %d.", DataLayout::ONEDNN, in->layout())); PADDLE_ENFORCE_EQ( filter->layout(), DataLayout::ONEDNN, phi::errors::InvalidArgument( "The filter tensor's layout should be %d, but got %d.", DataLayout::ONEDNN, filter->layout())); PADDLE_ENFORCE_EQ( out_grad->layout(), DataLayout::ONEDNN, phi::errors::InvalidArgument( "The output_grad tensor's layout should be %d, but got %d.", DataLayout::ONEDNN, out_grad->layout())); PADDLE_ENFORCE_EQ( is_test, false, phi::errors::InvalidArgument( "is_test attribute should be set to False in training phase.")); std::vector strides(begin(strides_in), end(strides_in)); std::vector paddings(begin(paddings_in), end(paddings_in)); std::vector dilations(begin(dilations_in), end(dilations_in)); auto input_dims = in->dims(); auto data_dims = phi::slice_ddim(input_dims, 2, input_dims.size()); auto filter_dims = filter->dims(); auto filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size()); auto ksize = phi::vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, data_dims, strides, ksize); auto src_tz = phi::vectorize(in->dims()); auto weights_tz = phi::vectorize(filter->dims()); int g = std::max(groups, 1); funcs::GetGroupConvWeightsTz(weights_tz, g); auto dst_tz = phi::vectorize(out_grad->dims()); /* create memory descriptor for conv backward without specified format * ('any') which lets a primitive (conv backward in this case) choose * the memory format preferred for best performance */ const auto chosen_memory_format = funcs::OneDNNMemoryFormat::any; const auto weights_format = funcs::OneDNNMemoryFormat::any; auto src_md = funcs::OneDNNMemDesc( src_tz, funcs::OneDNNGetDataType(), chosen_memory_format); const auto dst_md = funcs::OneDNNMemDesc( dst_tz, funcs::OneDNNGetDataType(), chosen_memory_format); auto diff_src_md = funcs::OneDNNMemDesc( src_tz, funcs::OneDNNGetDataType(), chosen_memory_format); auto weights_md = funcs::OneDNNMemDesc( weights_tz, funcs::OneDNNGetDataType(), weights_format); auto diff_weights_md = funcs::OneDNNMemDesc( weights_tz, funcs::OneDNNGetDataType(), weights_format); auto diff_dst_md = funcs::OneDNNMemDesc( dst_tz, funcs::OneDNNGetDataType(), chosen_memory_format); auto onednn_paddings = funcs::ToOneDNNPadding(paddings); std::transform( dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) { return i - 1; }); const dnnl::memory::dims dilations_dims = dilations; const dnnl::memory::dims stride_dims = strides; // Recreating FWD PD. For training there are no post ops in convolution dnnl::primitive_attr conv_attr; if (bias) { auto bias_tz = phi::vectorize(bias->dims()); dnnl::memory::desc bias_md; if (funcs::is_int8()) { bias_md = funcs::OneDNNMemDesc(bias_tz, dnnl::memory::data_type::s32, funcs::OneDNNMemoryFormat::x); } else { bias_md = funcs::OneDNNMemDesc(bias_tz, dnnl::memory::data_type::f32, funcs::OneDNNMemoryFormat::x); } this->AcquireForwardPrimitiveDescriptor( conv_attr, dnnl::prop_kind::forward_training, dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims, onednn_paddings[0], onednn_paddings[1]); } else { this->AcquireForwardPrimitiveDescriptor( conv_attr, dnnl::prop_kind::forward_training, dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md, stride_dims, dilations_dims, onednn_paddings[0], onednn_paddings[1]); } this->AcquireBackwardPrimitiveDescriptor( dnnl::algorithm::convolution_direct, diff_src_md, weights_md, diff_dst_md, strides, dilations_dims, onednn_paddings[0], onednn_paddings[1]); this->AcquireBackwardWeightsPrimitiveDescriptor( dnnl::algorithm::convolution_direct, src_md, diff_weights_md, diff_dst_md, strides, dilations_dims, onednn_paddings[0], onednn_paddings[1]); } } std::shared_ptr>> get_int8_bias_scales( const DenseTensor* filter, int groups, const std::vector& scale_weights_data) { // Get scales int8 bias key const std::string key_bs = this->key_ + "@bs"; // Scales for int8 bias are to be cached to avoid // computing them each iteration groups = std::max(groups, 1); auto bias_scale_tuple = std::static_pointer_cast>>( this->dev_ctx_.GetBlob(key_bs)); if (bias_scale_tuple) return bias_scale_tuple; const auto& weights_tz = phi::vectorize(filter->dims()); const auto& scale_in_data = this->dev_ctx_.HasDnnAttr("Scale_in") ? PADDLE_GET_CONST(float, this->dev_ctx_.GetDnnAttr("Scale_in")) : 1.0f; bool is_multi_channel = scale_weights_data.size() > 1; int mask_reorder = is_multi_channel ? 1 << 0 : 1; int count = 1; if (is_multi_channel) { count *= weights_tz[0]; if (groups > 1) { count *= weights_tz[1]; } } bias_scale_tuple = std::make_shared>>(std::make_tuple( static_cast(mask_reorder), std::vector(count))); for (int i = 0; i < count; i++) { std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i]; } this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple); return bias_scale_tuple; } std::tuple, float> get_int8_scales( const DenseTensor* filter, int groups, bool force_fp32_output, bool fuse_residual_conn, const std::string& fuse_activation) const { const auto& weights_tz = phi::vectorize(filter->dims()); groups = std::max(groups, 1); const auto& scale_weights_data = this->dev_ctx_.HasDnnAttr("Scale_weights") ? PADDLE_GET_CONST(std::vector, this->dev_ctx_.GetDnnAttr("Scale_weights")) : std::vector{1.0f}; const auto& scale_in_data = this->dev_ctx_.HasDnnAttr("Scale_in") ? PADDLE_GET_CONST(float, this->dev_ctx_.GetDnnAttr("Scale_in")) : 1.0f; const auto& scale_in_eltwise_data = this->dev_ctx_.HasDnnAttr("Scale_in_eltwise") ? PADDLE_GET_CONST(float, this->dev_ctx_.GetDnnAttr("Scale_in_eltwise")) : 1.0f; bool is_multi_channel = scale_weights_data.size() > 1; bool has_activation = !fuse_activation.empty(); const auto& scale_out = this->dev_ctx_.HasDnnAttr("Scale_out") ? PADDLE_GET_CONST(float, this->dev_ctx_.GetDnnAttr("Scale_out")) : 1.0f; float activation_scale = (!force_fp32_output && has_activation) ? scale_out : 1.0f; float scale_out_data = (force_fp32_output || has_activation) ? 1.0f : scale_out; float sum_scale = fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f; int count = is_multi_channel ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0]) : 1; std::vector output_shift_scale(count); #pragma omp parallel for if (count > 50) for (int i = 0; i < count; i++) { if (scale_weights_data[i] == 0.0) // weights data will contain 0 in some models, then weights // scale couldn't be calculated output_shift_scale[i] = scale_out_data; else output_shift_scale[i] = static_cast(static_cast(scale_out_data) / (static_cast(scale_in_data) * static_cast(scale_weights_data[i]))); } return std::make_tuple(sum_scale, output_shift_scale, activation_scale); } dnnl::primitive_attr CreateConvAttrs(const DenseTensor* filter, int groups, bool force_fp32_output, bool fuse_residual_conn, const std::string& fuse_activation) { dnnl::primitive_attr conv_attr; dnnl::post_ops post_operations; float sum_scale = 1.0f; float activation_scale = 1.0f; std::vector output_shift_scale; if (funcs::is_int8()) { if (this->dev_ctx_.HasDnnAttr("Sum_scale")) { sum_scale = PADDLE_GET_CONST(float, this->dev_ctx_.GetDnnAttr("Sum_scale")); activation_scale = this->dev_ctx_.HasDnnAttr("Activation_scale") ? PADDLE_GET_CONST( float, this->dev_ctx_.GetDnnAttr("Activation_scale")) : activation_scale; output_shift_scale = this->dev_ctx_.HasDnnAttr("Output_shift_scale") ? PADDLE_GET_CONST( std::vector, this->dev_ctx_.GetDnnAttr("Output_shift_scale")) : output_shift_scale; } else { std::tie(sum_scale, output_shift_scale, activation_scale) = get_int8_scales(filter, groups, force_fp32_output, fuse_residual_conn, fuse_activation); } if (output_shift_scale.size() > 0) { int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0; conv_attr.set_output_scales(mask, output_shift_scale); } } // Fusion with Elementwise layer relies on adding a sum post-operation with // the scale parameter. It is assumed that when fuse_residual_connection is // true, the output tensor contains the data coming from residual // connection. The result of this post_op is: // Output = scale * Output + Conv_Out. if (fuse_residual_conn) { post_operations.append_sum(sum_scale); } funcs::AppendActivation(this->dev_ctx_, post_operations, activation_scale); conv_attr.set_post_ops(post_operations); return conv_attr; } std::shared_ptr AcquireWeightsMemoryWithReorderFromDataPrimitive( const phi::DenseTensor* filter, const int groups, const bool is_conv3d) { const K* filter_data = filter->data(); auto weights_tz = phi::vectorize(filter->dims()); funcs::GetGroupConvWeightsTz(weights_tz, groups); auto user_src_md = funcs::OneDNNMemDesc(weights_tz, funcs::OneDNNGetDataType(), GetWeightsFormat(groups, is_conv3d)); return this->AcquireMemoryWithReorder(user_src_md, this->bwd_pd_->weights_desc(), funcs::to_void_cast(filter_data), "@weights_mem_d_p", false); } std::shared_ptr AcquireSrcMemoryWithReorder( const phi::DenseTensor* input) { return this->AcquireMemoryWithReorderPrimitive(input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p", this->fwd_pd_->src_desc()); } std::shared_ptr AcquireSrcMemoryWithReorderFromWeightsPrimitive( const phi::DenseTensor* input) { return this->AcquireMemoryWithReorderPrimitive(input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p", this->bwd_w_pd_->src_desc()); } std::shared_ptr AcquireDiffDstMemoryWithReorderFromWeightsPrimitive( const phi::DenseTensor* out_grad) { return this->AcquireMemoryWithReorderPrimitive( out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target", "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc()); } std::shared_ptr AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive( const phi::DenseTensor* out_grad) { return this->AcquireMemoryWithReorderPrimitive( out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target", "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc()); } std::shared_ptr AcquireMemoryWithReorderPrimitive( const phi::DenseTensor* in_mem, const char* key_mem_user, const char* key_mem_target, const char* key_mem, const dnnl::memory::desc& mem_md) { const T* in_mem_data = in_mem->data(); const std::string user_key_suffix{key_mem_user}; auto user_mem_p = this->AcquireMemory(user_key_suffix); if (!user_mem_p) { return this->AcquireMemoryWithReorder(in_mem->mem_desc(), mem_md, funcs::to_void_cast(in_mem_data), key_mem); } else { const std::string target_key_suffix{key_mem_target}; const auto target_mem_p = this->AcquireMemory(target_key_suffix); user_mem_p->set_data_handle(funcs::to_void_cast(in_mem_data)); if (user_mem_p != target_mem_p) { this->AcquireReorder(user_mem_p, target_mem_p); } return target_mem_p; } } std::shared_ptr AcquireWeightsMemoryWithReorder( const phi::DenseTensor* filter, const int groups, const bool is_conv3d, const bool is_test, const std::vector& scale_data = {1.0f}, int mask = 0) { // This is workaround to make execution faster, delete // if statement after including md inside Tensor auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target"); if (is_test && weights_mem_p) { return weights_mem_p; } else if (is_test) { const K* filter_data = filter->data(); auto weights_tz = phi::vectorize(filter->dims()); funcs::GetGroupConvWeightsTz(weights_tz, groups); auto user_src_md = funcs::OneDNNMemDesc(weights_tz, funcs::OneDNNGetDataType(), GetWeightsFormat(groups, is_conv3d)); return this->AcquireMemoryWithReorder(user_src_md, this->fwd_pd_->weights_desc(), funcs::to_void_cast(filter_data), "@weights_mem_p", is_test, {}, scale_data, mask); } else { const T* filter_data = filter->data(); auto weights_tz = phi::vectorize(filter->dims()); funcs::GetGroupConvWeightsTz(weights_tz, groups); auto user_src_md = funcs::OneDNNMemDesc(weights_tz, funcs::OneDNNGetDataType(), GetWeightsFormat(groups, is_conv3d)); return this->AcquireMemoryWithReorder(user_src_md, this->fwd_pd_->weights_desc(), funcs::to_void_cast(filter_data), "@weights_mem_p", is_test, {}, scale_data, mask); } } std::shared_ptr AcquireBiasMemoryWithReorder( const phi::DenseTensor* bias, const bool is_test, const std::vector& scale_data = {1.0f}, int mask = 0) { auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target"); if (is_test && bias_mem_p) { return bias_mem_p; } else { // if K is int8 (weights are int8) then biases are int32 using K_Bias = typename std:: conditional::value, int32_t, K>::type; if (std::is_same::value && bias->dtype() != phi::DataType::INT32) { LOG(ERROR) << "Bias should be of type int32 but is " << bias->dtype(); } const K_Bias* bias_data = bias->data(); return this->AcquireMemoryWithReorder( bias->mem_desc(), this->fwd_pd_->bias_desc(), funcs::to_void_cast(bias_data), "@bias_mem_p", is_test, {}, scale_data, mask); } } std::shared_ptr AcquireResidualMemory( const phi::DenseTensor* residual_param) { void* residual_data = residual_param->dtype() == paddle::experimental::CppTypeToDataType::Type() ? funcs::to_void_cast(residual_param->data()) : funcs::to_void_cast(residual_param->data()); auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p"); if (residual_mem_p) { residual_mem_p->set_data_handle(residual_data); return residual_mem_p; } else { return this->AcquireMemoryFromPrimitive(residual_param->mem_desc(), residual_data, "@user_residual_data_mem_p"); } } std::shared_ptr AcquireDstMemoryWithResidual( phi::DenseTensor* output, const phi::DenseTensor* residual_param) { std::shared_ptr dst_memory_p; if (residual_param->mem_desc() != this->fwd_pd_->dst_desc()) { auto residual_memory_p = this->AcquireResidualMemory(residual_param); dst_memory_p = this->template AcquireDstMemory(output); this->AcquireReorder(residual_memory_p, dst_memory_p); } else { // Changing ShareDataWith to TensorCopy results in performance drop // on ResNet architectures // (https://github.com/PaddlePaddle/Paddle/issues/22964) output->ShareDataWith(*residual_param); dst_memory_p = this->template AcquireDstMemory(output); } return dst_memory_p; } }; } // namespace onednn } // namespace phi