# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test fleet.""" from __future__ import print_function import os import unittest import paddle.fluid.incubate.fleet.base.role_maker as role_maker class TestFleet1(unittest.TestCase): """ Test cases for fleet minimize. """ def setUp(self): """Set up, set envs.""" os.environ["PADDLE_TRAINERS_NUM"] = "2" os.environ[ "PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001" def test_pslib_1(self): """Test cases for pslib.""" import paddle.fluid as fluid from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_PORT"] = "36001" os.environ["TRAINING_ROLE"] = "TRAINER" os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001" os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002" os.environ["PADDLE_TRAINER_ID"] = "0" role_maker = GeneralRoleMaker() #role_maker.generate_role() place = fluid.CPUPlace() exe = fluid.Executor(place) #fleet.init(role_maker) train_program = fluid.Program() startup_program = fluid.Program() scope = fluid.Scope() with fluid.program_guard(train_program, startup_program): show = fluid.layers.data(name="show", shape=[-1, 1], \ dtype="int64", lod_level=1, append_batch_size=False) emb = fluid.layers.embedding(input=show, size=[1, 1], \ is_sparse=True, is_distributed=True, \ param_attr=fluid.ParamAttr(name="embedding")) fc = fluid.layers.fc(input=emb, size=1, act=None) label = fluid.layers.data(name="click", shape=[-1, 1], \ dtype="int64", lod_level=1, append_batch_size=False) label_cast = fluid.layers.cast(label, dtype='float32') cost = fluid.layers.log_loss(fc, label_cast) try: adam = fluid.optimizer.Adam(learning_rate=0.000005) adam = fleet.distributed_optimizer( adam, strategy={ "embedding": { "sparse_accessor_class": "DownpourCtrAccessor" } }) adam.minimize([cost], [scope]) fleet.run_server() except: print("do not support pslib test, skip") return try: # worker should call these methods instead of server # the following is only for test when with_pslib=off def test_func(): """ it is only a test function """ return True fleet._role_maker.is_first_worker = test_func fleet._role_maker._barrier_worker = test_func fleet.save_model("./model_000") fleet.save_one_table(0, "./model_001") fleet.save_one_table(0, "./model_002", prefix="hahaha") fleet.load_model("./model_0003") fleet.load_one_table(0, "./model_004") fleet.confirm() fleet.revert() except: print("do not support pslib test, skip") return if __name__ == "__main__": unittest.main()