#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from cinn.common import * from cinn.frontend import * from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper @OpTestTool.skip_if(not is_compiled_with_cuda(), "x86 test will be skipped due to timeout.") class TestCholeskyOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.inputs = {} self.prepare_inputs() def prepare_inputs(self): if "batch_dim" in self.case and self.case["batch_dim"] > 0: x = [] for _ in range(self.case["batch_dim"]): matrix = self.random(self.case["shape"], self.case["dtype"], -1.0, 1.0) matrix_t = np.transpose(matrix, [1, 0]) x.append(np.dot(matrix, matrix_t)) x = np.stack(x) else: matrix = self.random(self.case["shape"], self.case["dtype"], -1.0, 1.0) matrix_t = np.transpose(matrix, [1, 0]) x = np.dot(matrix, matrix_t) self.inputs = {"x": x} self.upper = self.case["upper"] def build_paddle_program(self, target): x = paddle.to_tensor(self.inputs["x"], stop_gradient=False) y = paddle.linalg.cholesky(x, upper=self.upper) self.paddle_outputs = [y] def build_cinn_program(self, target): builder = NetBuilder("cholesky") x = builder.create_input( self.nptype2cinntype(self.inputs["x"].dtype), self.inputs["x"].shape, "x") out = builder.cholesky(x, self.upper) prog = builder.build() res = self.get_cinn_output( prog, target, [x], [self.inputs["x"]], [out], passes=[]) self.cinn_outputs = [res[0]] def test_check_results(self): self.check_outputs_and_grads() class TestCholeskyOpShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestCholeskyOpShape" self.cls = TestCholeskyOp self.inputs = [ { "shape": [1, 1], }, { "shape": [8, 8], }, { "shape": [10, 10], }, ] self.dtypes = [ { "dtype": "float32" }, ] self.attrs = [ { "upper": False }, ] class TestCholeskyOpLargeShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestCholeskyOpLargeShape" self.cls = TestCholeskyOp self.inputs = [ { "shape": [1024, 1024], }, { "shape": [2048, 2048], }, ] self.dtypes = [ { "dtype": "float64" }, ] self.attrs = [ { "upper": False, "batch_dim": 2 }, { "upper": False, "batch_dim": 4 }, { "upper": True, "batch_dim": 8 }, ] class TestCholeskyOpDtype(TestCaseHelper): def init_attrs(self): self.class_name = "TestCholeskyOpDtype" self.cls = TestCholeskyOp self.inputs = [ { "shape": [1, 1], }, { "shape": [8, 8], }, { "shape": [10, 10], }, ] self.dtypes = [ { "dtype": "float32" }, { "dtype": "float64" }, ] self.attrs = [ { "upper": False }, ] class TestCholeskyOpBatch(TestCaseHelper): def init_attrs(self): self.class_name = "TestCholeskyOpBatch" self.cls = TestCholeskyOp self.inputs = [ { "shape": [1, 1], }, { "shape": [8, 8], }, { "shape": [10, 10], }, ] self.dtypes = [ { "dtype": "float32" }, ] self.attrs = [ { "upper": False, "batch_dim": 1 }, { "upper": False, "batch_dim": 4 }, { "upper": False, "batch_dim": 8 }, ] class TestCholeskyOpAttrs(TestCaseHelper): def init_attrs(self): self.class_name = "TestCholeskyOpAttrs" self.cls = TestCholeskyOp self.inputs = [ { "shape": [1, 1], }, { "shape": [8, 8], }, { "shape": [10, 10], }, ] self.dtypes = [ { "dtype": "float32" }, { "dtype": "float64" }, ] self.attrs = [ { "upper": True, }, ] if __name__ == "__main__": TestCholeskyOpShape().run() TestCholeskyOpLargeShape().run() TestCholeskyOpDtype().run() TestCholeskyOpBatch().run() TestCholeskyOpAttrs().run()