#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle from cinn.frontend import * from cinn.common import * @OpTestTool.skip_if(not is_compiled_with_cuda(), "x86 test will be skipped due to timeout.") class TestBroadcastToOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.prepare_inputs() def prepare_inputs(self): self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["x_dtype"]) def build_paddle_program(self, target): x = paddle.to_tensor(self.x_np, stop_gradient=True) out = paddle.broadcast_to(x, shape=self.case["d_shape"]) self.paddle_outputs = [out] def build_cinn_program(self, target): builder = NetBuilder("BroadcastTo") x = builder.create_input( self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], "x") out = builder.broadcast_to( x, out_shape=self.case["d_shape"], broadcast_axes=self.case["broadcast_axes"]) prog = builder.build() res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) self.cinn_outputs = [res[0]] def test_check_results(self): max_relative_error = self.case[ "max_relative_error"] if "max_relative_error" in self.case else 1e-5 self.check_outputs_and_grads(max_relative_error=max_relative_error) class TestBroadcastToAllOne(TestCaseHelper): def init_attrs(self): self.class_name = "TestBroadcastToOpCase" self.cls = TestBroadcastToOp self.inputs = [ { "x_shape": [1], "d_shape": [1, 2], "broadcast_axes": [1], }, { "x_shape": [5, 3], "d_shape": [4, 5, 3], "broadcast_axes": [1, 2], }, { "x_shape": [4, 5, 3], "d_shape": [6, 4, 5, 3], "broadcast_axes": [1, 2, 3], }, { "x_shape": [5, 4, 3, 2], "d_shape": [6, 5, 4, 3, 2], "broadcast_axes": [1, 2, 3, 4], }, { "x_shape": [16, 8, 4, 2, 1], "d_shape": [32, 16, 8, 4, 2, 1], "broadcast_axes": [1, 2, 3, 4, 5], }, ] self.dtypes = [ { "x_dtype": "float32", }, ] self.attrs = [] class TestBroadcastToAllTwo(TestCaseHelper): def init_attrs(self): self.class_name = "TestBroadcastToOpCase" self.cls = TestBroadcastToOp self.inputs = [ { "x_shape": [5, 3], "d_shape": [4, 5, 3], "broadcast_axes": [1, 2], }, ] self.dtypes = [ { "x_dtype": "bool", }, #{ # "x_dtype": "int8", #}, { "x_dtype": "int32", }, { "x_dtype": "int64", }, { "x_dtype": "float16", }, { "x_dtype": "float32", }, { "x_dtype": "float64", }, ] self.attrs = [] class TestBroadcastToOpNoAxes(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.prepare_inputs() def prepare_inputs(self): self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["x_dtype"]) def build_paddle_program(self, target): x = paddle.to_tensor(self.x_np, stop_gradient=True) out = paddle.broadcast_to(x, shape=self.case["d_shape"]) self.paddle_outputs = [out] def build_cinn_program(self, target): builder = NetBuilder("BroadcastTo") x = builder.create_input( self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], "x") out = builder.broadcast_to(x, out_shape=self.case["d_shape"]) prog = builder.build() res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) self.cinn_outputs = [res[0]] def test_check_results(self): max_relative_error = self.case[ "max_relative_error"] if "max_relative_error" in self.case else 1e-5 self.check_outputs_and_grads(max_relative_error=max_relative_error) class TestBroadcastToOpNoAxesAllOne(TestCaseHelper): def init_attrs(self): self.class_name = "TestBroadcastToOpNoAxesCase" self.cls = TestBroadcastToOpNoAxes self.inputs = [ { "x_shape": [1], "d_shape": [1, 2], }, { "x_shape": [6], "d_shape": [4, 5, 6], }, { "x_shape": [1, 1, 1], "d_shape": [4, 5, 3], }, { "x_shape": [1, 1, 3], "d_shape": [4, 5, 3], }, { "x_shape": [4, 1, 3], "d_shape": [4, 5, 3], }, { "x_shape": [64, 2], "d_shape": [64, 2], }, { "x_shape": [64, 32, 16], "d_shape": [128, 64, 32, 16], }, { "x_shape": [64, 32, 16, 8], "d_shape": [128, 64, 32, 16, 8], }, #{ # "x_shape": [128, 64, 32, 16, 8], # "d_shape": [256, 128, 64, 32, 16, 8], #}, ] self.dtypes = [ { "x_dtype": "float32", }, ] self.attrs = [] if __name__ == "__main__": TestBroadcastToAllOne().run() TestBroadcastToAllTwo().run() TestBroadcastToOpNoAxesAllOne().run()