# Copyright (c) 2023 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from op_test import OpTest, OpTestTool from op_test_helper import TestCaseHelper import paddle from cinn.frontend import * from cinn.common import * @OpTestTool.skip_if(not is_compiled_with_cuda(), "x86 test will be skipped due to timeout.") class TestBitwiseOp(OpTest): def setUp(self): print(f"\nRunning {self.__class__.__name__}: {self.case}") self.prepare_inputs() def prepare_inputs(self): # Test with infinite values if "with_inf" in self.case: self.x_np = np.full( shape=self.case["x_shape"], fill_value=np.inf, dtype=self.case["dtype"]) # Test with nan values elif "with_nan" in self.case: self.x_np = np.full( shape=self.case["x_shape"], fill_value=np.nan, dtype=self.case["dtype"]) else: self.x_np = self.random( shape=self.case["x_shape"], dtype=self.case["dtype"]) if self.case["op_type"] != "not": self.y_np = self.random( shape=self.case["y_shape"], dtype=self.case["dtype"]) def build_paddle_program(self, target): x = paddle.to_tensor(self.x_np, stop_gradient=False) if self.case["op_type"] != "not": y = paddle.to_tensor(self.y_np, stop_gradient=False) if self.case["op_type"] == "and": out = paddle.bitwise_and(x, y) elif self.case["op_type"] == "or": out = paddle.bitwise_or(x, y) elif self.case["op_type"] == "xor": out = paddle.bitwise_xor(x, y) elif self.case["op_type"] == "not": out = paddle.bitwise_not(x) else: out = paddle.assign(x) self.paddle_outputs = [out] def build_cinn_program(self, target): builder = NetBuilder("bitwise") x = builder.create_input( self.nptype2cinntype(self.case["dtype"]), self.case["x_shape"], "x") if self.case["op_type"] != "not": y = builder.create_input( self.nptype2cinntype(self.case["dtype"]), self.case["y_shape"], "y") if self.case["op_type"] == "and": out = builder.bitwise_and(x, y) elif self.case["op_type"] == "or": out = builder.bitwise_or(x, y) elif self.case["op_type"] == "xor": out = builder.bitwise_xor(x, y) elif self.case["op_type"] == "not": out = builder.bitwise_not(x) else: out = builder.identity(x) prog = builder.build() if self.case["op_type"] != "not": res = self.get_cinn_output(prog, target, [x, y], [self.x_np, self.y_np], [out]) else: res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) self.cinn_outputs = res def test_check_results(self): max_relative_error = self.case[ "max_relative_error"] if "max_relative_error" in self.case else 1e-5 self.check_outputs_and_grads(max_relative_error=max_relative_error) class TestBitwiseOpShape(TestCaseHelper): def init_attrs(self): self.class_name = "TestBitwiseOpCase" self.cls = TestBitwiseOp self.inputs = [ { "x_shape": [1], "y_shape": [1], }, { "x_shape": [1024], "y_shape": [1024], }, { "x_shape": [512, 256], "y_shape": [512, 256], }, { "x_shape": [128, 64, 32], "y_shape": [128, 64, 32], }, { "x_shape": [16, 8, 4, 2], "y_shape": [16, 8, 4, 2], }, { "x_shape": [16, 8, 4, 2, 1], "y_shape": [16, 8, 4, 2, 1], }, { "x_shape": [1, 1, 1, 1, 1], "y_shape": [1, 1, 1, 1, 1], }, ] self.dtypes = [ { "dtype": "int32" }, ] self.attrs = [ { "op_type": "and" }, { "op_type": "or" }, { "op_type": "xor" }, { "op_type": "not" }, ] class TestBitwiseOpDtype(TestCaseHelper): def init_attrs(self): self.class_name = "TestBitwiseOpCase" self.cls = TestBitwiseOp self.inputs = [ { "x_shape": [32, 64], "y_shape": [32, 64], }, ] self.dtypes = [ { "dtype": "bool" }, { "dtype": "uint8" }, { "dtype": "int8" }, { "dtype": "int16" }, { "dtype": "int32" }, { "dtype": "int64" }, ] self.attrs = [ { "op_type": "and" }, { "op_type": "or" }, { "op_type": "xor" }, { "op_type": "not" }, ] class TestBitwiseOpBroadcast(TestBitwiseOpShape): def init_attrs(self): super().init_attrs() self.inputs = [ { "x_shape": [1024], "y_shape": [1], }, { "x_shape": [512, 256], "y_shape": [1, 1], }, { "x_shape": [128, 64, 32], "y_shape": [1, 1, 1], }, { "x_shape": [16, 8, 4, 2], "y_shape": [1, 1, 1, 1], }, { "x_shape": [16, 8, 4, 2, 1], "y_shape": [1, 1, 1, 1, 1], }, ] class TestBitwiseWithINF(TestBitwiseOpDtype): def init_attrs(self): super().init_attrs() self.inputs = [ { "x_shape": [16], "y_shape": [16], "with_inf": True, }, ] class TestBitwiseWithNAN(TestBitwiseOpDtype): def init_attrs(self): super().init_attrs() self.inputs = [ { "x_shape": [16], "y_shape": [16], "with_nan": True, }, ] if __name__ == "__main__": TestBitwiseOpShape().run() TestBitwiseOpDtype().run() TestBitwiseOpBroadcast().run() TestBitwiseWithINF().run() TestBitwiseWithNAN().run()