# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import numpy as np import paddle.fluid as fluid import paddle.fluid.dygraph as dg class TestComplexGetitemLayer(unittest.TestCase): def setUp(self): self._places = [fluid.CPUPlace()] if fluid.core.is_compiled_with_cuda(): self._places.append(fluid.CUDAPlace(0)) def test_case1(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0] for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) x_var_slice = x_var[0] np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) def test_case2(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1] for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) x_var_slice = x_var[0][1] np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) def test_case3(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1][2] for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) x_var_slice = x_var[0][1][2] np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) def test_case4(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1][0:3] for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) x_var_slice = x_var[0][1][0:3] np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) def test_case5(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1][0:4:2] for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) x_var_slice = x_var[0][1][0:4:2] np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) def test_case6(self): x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) x_np_slice = x_np[0][1:3][0:4:2] for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) x_var_slice = x_var[0][1:3][0:4:2] np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice) if __name__ == '__main__': unittest.main()