# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core def conv3d_forward_naive( input, filter, group, conv_param, padding_algorithm='EXPLICIT', data_format="NCDHW", ): if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]: raise ValueError( "Unknown Attr(padding_algorithm): '%s'. " "It can only be 'SAME' or 'VALID'." % str(padding_algorithm) ) if data_format not in ["NCDHW", "NDHWC"]: raise ValueError( "Unknown Attr(data_format): '%s' ." "It can only be 'NCDHW' or 'NDHWC'." % str(data_format) ) channel_last = data_format == "NDHWC" if channel_last: input = np.transpose(input, [0, 4, 1, 2, 3]) in_n, in_c, in_d, in_h, in_w = input.shape f_n, f_c, f_d, f_h, f_w = filter.shape out_n = in_n out_c = f_n assert f_c * group == in_c assert np.mod(out_c, group) == 0 sub_out_c = out_c // group sub_f_n = f_n // group stride, pad, dilation = ( conv_param['stride'], conv_param['pad'], conv_param['dilations'], ) # update pad and dilation def _get_padding_with_SAME(input_shape, pool_size, pool_stride): padding = [] for input_size, filter_size, stride_size in zip( input_shape, pool_size, pool_stride ): out_size = int((input_size + stride_size - 1) / stride_size) pad_sum = np.max( ((out_size - 1) * stride_size + filter_size - input_size, 0) ) pad_0 = int(pad_sum / 2) pad_1 = int(pad_sum - pad_0) padding.append(pad_0) padding.append(pad_1) return padding ksize = filter.shape[2:5] if padding_algorithm == "VALID": pad = [0, 0, 0, 0, 0, 0] elif padding_algorithm == "SAME": dilation = [1, 1, 1] input_data_shape = input.shape[2:5] pad = _get_padding_with_SAME(input_data_shape, ksize, stride) pad_d_0, pad_d_1 = pad[0], pad[0] pad_h_0, pad_h_1 = pad[1], pad[1] pad_w_0, pad_w_1 = pad[2], pad[2] if len(pad) == 6: pad_d_0, pad_d_1 = pad[0], pad[1] pad_h_0, pad_h_1 = pad[2], pad[3] pad_w_0, pad_w_1 = pad[4], pad[5] out_d = ( 1 + (in_d + pad_d_0 + pad_d_1 - (dilation[0] * (f_d - 1) + 1)) // stride[0] ) out_h = ( 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[1] * (f_h - 1) + 1)) // stride[1] ) out_w = ( 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[2] * (f_w - 1) + 1)) // stride[2] ) out = np.zeros((in_n, out_c, out_d, out_h, out_w)) d_bolck_d = dilation[0] * (f_d - 1) + 1 d_bolck_h = dilation[1] * (f_h - 1) + 1 d_bolck_w = dilation[2] * (f_w - 1) + 1 input_pad = np.pad( input, ( (0, 0), (0, 0), (pad_d_0, pad_d_1), (pad_h_0, pad_h_1), (pad_w_0, pad_w_1), ), mode='constant', constant_values=0, ) filter_dilation = np.zeros((f_n, f_c, d_bolck_d, d_bolck_h, d_bolck_w)) filter_dilation[ :, :, 0 : d_bolck_d : dilation[0], 0 : d_bolck_h : dilation[1], 0 : d_bolck_w : dilation[2], ] = filter for d in range(out_d): for i in range(out_h): for j in range(out_w): for g in range(group): input_pad_masked = input_pad[ :, g * f_c : (g + 1) * f_c, d * stride[0] : d * stride[0] + d_bolck_d, i * stride[1] : i * stride[1] + d_bolck_h, j * stride[2] : j * stride[2] + d_bolck_w, ] f_sub = filter_dilation[ g * sub_f_n : (g + 1) * sub_f_n, :, :, :, : ] for k in range(sub_out_c): out[:, g * sub_out_c + k, d, i, j] = np.sum( input_pad_masked * f_sub[k, :, :, :, :], axis=(1, 2, 3, 4), ) if channel_last: out = np.transpose(out, [0, 2, 3, 4, 1]) return out def create_test_cudnn_class(parent): @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNCase(parent): def init_kernel_type(self): self.use_cudnn = True self.dtype = ( np.float32 if core.is_compiled_with_rocm() else np.float64 ) cls_name = "{0}_{1}".format(parent.__name__, "CUDNN") TestCUDNNCase.__name__ = cls_name globals()[cls_name] = TestCUDNNCase def create_test_padding_SAME_class(parent): class TestPaddingSMAECase(parent): def init_paddings(self): self.pad = [0, 0, 0] self.padding_algorithm = "SAME" cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp") TestPaddingSMAECase.__name__ = cls_name globals()[cls_name] = TestPaddingSMAECase def create_test_padding_VALID_class(parent): class TestPaddingVALIDCase(parent): def init_paddings(self): self.pad = [1, 1, 1] self.padding_algorithm = "VALID" cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp") TestPaddingVALIDCase.__name__ = cls_name globals()[cls_name] = TestPaddingVALIDCase def create_test_cudnn_padding_SAME_class(parent): @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNPaddingSMAECase(parent): def init_kernel_type(self): self.use_cudnn = True self.dtype = ( np.float32 if core.is_compiled_with_rocm() else np.float64 ) def init_paddings(self): self.pad = [1, 1, 1] self.padding_algorithm = "SAME" cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp") TestCUDNNPaddingSMAECase.__name__ = cls_name globals()[cls_name] = TestCUDNNPaddingSMAECase def create_test_cudnn_padding_VALID_class(parent): @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNPaddingVALIDCase(parent): def init_kernel_type(self): self.use_cudnn = True self.dtype = ( np.float32 if core.is_compiled_with_rocm() else np.float64 ) def init_paddings(self): self.pad = [1, 1, 1] self.padding_algorithm = "VALID" cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp") TestCUDNNPaddingVALIDCase.__name__ = cls_name globals()[cls_name] = TestCUDNNPaddingVALIDCase def create_test_channel_last_class(parent): class TestChannelLastCase(parent): def init_data_format(self): self.data_format = "NDHWC" def init_test_case_2(self): N, C, D, H, W = self.input_size self.input_size = [N, D, H, W, C] cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast") TestChannelLastCase.__name__ = cls_name globals()[cls_name] = TestChannelLastCase def create_test_cudnn_channel_last_class(parent): @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCudnnChannelLastCase(parent): def init_kernel_type(self): self.use_cudnn = True self.dtype = ( np.float32 if core.is_compiled_with_rocm() else np.float64 ) def init_data_format(self): self.data_format = "NDHWC" def init_test_case_2(self): N, C, D, H, W = self.input_size self.input_size = [N, D, H, W, C] cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast") TestCudnnChannelLastCase.__name__ = cls_name globals()[cls_name] = TestCudnnChannelLastCase class TestConv3DOp(OpTest): def setUp(self): self.op_type = "conv3d" self.use_cudnn = False self.use_mkldnn = False self.data_format = "AnyLayout" self.dtype = np.float64 self.init_kernel_type() self.init_group() self.init_dilation() self.init_test_case() conv3d_param = { 'stride': self.stride, 'pad': self.pad, 'dilations': self.dilations, } input = np.random.random(self.input_size).astype(self.dtype) filter = np.random.random(self.filter_size).astype(self.dtype) output = conv3d_forward_naive( input, filter, self.groups, conv3d_param, ).astype(self.dtype) self.inputs = { 'Input': OpTest.np_dtype_to_fluid_dtype(input), 'Filter': OpTest.np_dtype_to_fluid_dtype(filter), } self.attrs = { 'strides': self.stride, 'paddings': self.pad, 'groups': self.groups, 'dilations': self.dilations, 'use_cudnn': self.use_cudnn, 'use_mkldnn': self.use_mkldnn, 'data_format': self.data_format, } self.outputs = {'Output': output} def has_cudnn(self): return core.is_compiled_with_cuda() and self.use_cudnn def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() self.check_output_with_place( place, atol=1e-5, check_dygraph=(not self.use_mkldnn) ) def test_check_grad(self): if self.dtype == np.float16: return place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03, check_dygraph=(not self.use_mkldnn), ) def test_check_grad_no_filter(self): if self.dtype == np.float16: return place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad_with_place( place, ['Input'], 'Output', max_relative_error=0.03, no_grad_set=set(['Filter']), check_dygraph=(not self.use_mkldnn), ) def test_check_grad_no_input(self): if self.dtype == np.float16: return place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad_with_place( place, ['Filter'], 'Output', max_relative_error=0.03, no_grad_set=set(['Input']), check_dygraph=(not self.use_mkldnn), ) def init_test_case(self): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.input_size = [2, 3, 4, 4, 4] # NCDHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3, 3] def init_test_case_2(self): pass def init_dilation(self): self.dilations = [1, 1, 1] def init_group(self): self.groups = 1 def init_kernel_type(self): pass class TestCase1(TestConv3DOp): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.input_size = [2, 3, 4, 4, 4] # NCDHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3, 3] class TestWithGroup1(TestConv3DOp): def init_group(self): self.groups = 3 class TestWithGroup2(TestCase1): def init_group(self): self.groups = 3 class TestWith1x1(TestConv3DOp): def init_test_case(self): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.input_size = [2, 3, 4, 4, 4] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [120, f_c, 1, 1, 1] def init_dilation(self): self.dilations = [1, 1, 1] def init_group(self): self.groups = 3 class TestWithInput1x1Filter1x1(TestConv3DOp): def init_test_case(self): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.input_size = [40, 3, 1, 1, 1] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [120, f_c, 1, 1, 1] def init_dilation(self): self.dilations = [1, 1, 1] def init_group(self): self.groups = 3 class TestWithDilation(TestConv3DOp): def init_test_case(self): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.input_size = [2, 3, 6, 6, 6] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 2, 2, 2] def init_dilation(self): self.dilations = [2, 2, 2] def init_group(self): self.groups = 3 # ---------------- Conv3DCUDNN ---------------- @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNN(TestConv3DOp): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16CUDNN(TestConv3DOp): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-2) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestWithGroup1CUDNN(TestWithGroup1): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16WithGroup1CUDNN(TestWithGroup1): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-2) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestWithGroup2CUDNN(TestWithGroup2): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16WithGroup2CUDNN(TestWithGroup2): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-2) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestWith1x1CUDNN(TestWith1x1): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16With1x1CUDNN(TestWith1x1): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-2) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-2) class TestCUDNNExhaustiveSearch(TestCUDNN): def init_kernel_type(self): self.use_cudnn = True self.exhaustive_search = True self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 # ---- test asymmetric padding ---- class TestConv3DOp_2(OpTest): def setUp(self): self.op_type = "conv3d" self.use_cudnn = False self.use_mkldnn = False self.data_format = "NCDHW" self.dtype = np.float64 self.init_kernel_type() self.init_group() self.init_dilation() self.init_data_format() self.init_test_case() self.init_paddings() self.init_test_case_2() conv3d_param = { 'stride': self.stride, 'pad': self.pad, 'dilations': self.dilations, } input = np.random.random(self.input_size).astype(self.dtype) filter = np.random.random(self.filter_size).astype(self.dtype) output = conv3d_forward_naive( input, filter, self.groups, conv3d_param, self.padding_algorithm, self.data_format, ).astype(self.dtype) self.inputs = { 'Input': OpTest.np_dtype_to_fluid_dtype(input), 'Filter': OpTest.np_dtype_to_fluid_dtype(filter), } self.attrs = { 'strides': self.stride, 'paddings': self.pad, 'padding_algorithm': self.padding_algorithm, 'groups': self.groups, 'dilations': self.dilations, 'use_cudnn': self.use_cudnn, 'use_mkldnn': self.use_mkldnn, 'data_format': self.data_format, } self.outputs = {'Output': output} def has_cudnn(self): return core.is_compiled_with_cuda() and self.use_cudnn def test_check_output(self): place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() self.check_output_with_place(place, atol=1e-5) def test_check_grad(self): if self.dtype == np.float16: return place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() self.check_grad_with_place( place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03 ) def test_check_grad_no_filter(self): if self.dtype == np.float16: return place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() self.check_grad_with_place( place, ['Input'], 'Output', max_relative_error=0.03, no_grad_set=set(['Filter']), ) def test_check_grad_no_input(self): if self.dtype == np.float16: return place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace() self.check_grad_with_place( place, ['Filter'], 'Output', max_relative_error=0.03, no_grad_set=set(['Input']), ) def init_test_case(self): self.stride = [1, 1, 1] self.input_size = [2, 3, 4, 4, 4] # NCDHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3, 3] def init_test_case_2(self): pass def init_dilation(self): self.dilations = [1, 1, 1] def init_group(self): self.groups = 1 def init_kernel_type(self): pass def init_paddings(self): self.pad = [0, 0, 0] self.padding_algorithm = "EXPLICIT" def init_data_format(self): self.data_format = "NCDHW" class TestConv3DOp_AsyPadding(TestConv3DOp_2): def init_test_case(self): self.stride = [1, 1, 2] self.input_size = [2, 3, 4, 4, 4] # NCDHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3, 3] def init_paddings(self): self.pad = [1, 0, 1, 0, 0, 2] self.padding_algorithm = "EXPLICIT" class TestConv3DOp_DiffDataInDiffDim(TestConv3DOp_2): def init_test_case(self): self.stride = [1, 1, 2] self.input_size = [2, 3, 4, 5, 5] # NCDHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 4, 3] def init_paddings(self): self.pad = [1, 0, 1, 0, 0, 2] self.padding_algorithm = "EXPLICIT" create_test_padding_SAME_class(TestConv3DOp_DiffDataInDiffDim) create_test_padding_VALID_class(TestConv3DOp_DiffDataInDiffDim) create_test_channel_last_class(TestConv3DOp_DiffDataInDiffDim) class TestCase1_AsyPadding(TestConv3DOp_2): def init_test_case(self): self.stride = [1, 1, 1] self.input_size = [2, 3, 4, 4, 4] # NCDHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3, 3] def init_paddings(self): self.pad = [0, 0, 1, 0, 0, 2] self.padding_algorithm = "EXPLICIT" class TestWithGroup1_AsyPadding(TestConv3DOp_2): def init_group(self): self.groups = 3 def init_paddings(self): self.pad = [1, 1, 1, 0, 0, 2] self.padding_algorithm = "EXPLICIT" class TestWithGroup2_AsyPadding(TestConv3DOp_2): def init_test_case(self): self.stride = [1, 1, 1] self.input_size = [2, 3, 4, 4, 4] # NCDHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3, 3] def init_group(self): self.groups = 3 def init_paddings(self): self.pad = [1, 1, 0, 1, 0, 2] self.padding_algorithm = "EXPLICIT" class TestWith1x1_AsyPadding(TestConv3DOp_2): def init_test_case(self): self.stride = [1, 1, 1] self.input_size = [2, 3, 4, 4, 4] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [120, f_c, 1, 1, 1] def init_dilation(self): self.dilations = [1, 1, 1] def init_group(self): self.groups = 3 def init_paddings(self): self.pad = [0, 0, 1, 0, 0, 2] self.padding_algorithm = "EXPLICIT" class TestWithDilation_AsyPadding(TestConv3DOp_2): def init_test_case(self): self.stride = [1, 1, 1] self.input_size = [2, 3, 6, 6, 6] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 2, 2, 2] def init_dilation(self): self.dilations = [2, 2, 2] def init_group(self): self.groups = 3 def init_paddings(self): self.pad = [0, 0, 1, 0, 1, 0] self.padding_algorithm = "EXPLICIT" create_test_cudnn_class(TestConv3DOp_AsyPadding) create_test_cudnn_class(TestWithGroup1_AsyPadding) create_test_cudnn_class(TestWithGroup2_AsyPadding) create_test_cudnn_class(TestWith1x1_AsyPadding) create_test_cudnn_class(TestWithDilation_AsyPadding) create_test_padding_SAME_class(TestConv3DOp_AsyPadding) create_test_padding_SAME_class(TestWithGroup1_AsyPadding) create_test_padding_SAME_class(TestWith1x1_AsyPadding) create_test_padding_VALID_class(TestConv3DOp_AsyPadding) create_test_padding_VALID_class(TestWithGroup1_AsyPadding) create_test_padding_VALID_class(TestWith1x1_AsyPadding) create_test_cudnn_padding_SAME_class(TestConv3DOp_AsyPadding) create_test_cudnn_padding_SAME_class(TestWithGroup1_AsyPadding) create_test_cudnn_padding_SAME_class(TestWith1x1_AsyPadding) create_test_cudnn_padding_VALID_class(TestConv3DOp_AsyPadding) create_test_cudnn_padding_VALID_class(TestWithGroup1_AsyPadding) create_test_cudnn_padding_VALID_class(TestWith1x1_AsyPadding) create_test_channel_last_class(TestConv3DOp_AsyPadding) create_test_channel_last_class(TestWithGroup1_AsyPadding) create_test_channel_last_class(TestWith1x1_AsyPadding) create_test_channel_last_class(TestConv3DOp_AsyPadding) create_test_channel_last_class(TestWithGroup1_AsyPadding) create_test_channel_last_class(TestWith1x1_AsyPadding) create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding) create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding) create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding) create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding) create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding) create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding) # FIXME(typhoonzero): find a way to determine if # using cudnn > 6 in python # class TestWithDilationCUDNN(TestWithDilation): # def init_op_type(self): # self.op_type = "conv3d" # --------- test python API --------------- class TestConv3DAPI(unittest.TestCase): def test_api(self): input_NDHWC = fluid.layers.data( name="input_NDHWC", shape=[2, 5, 5, 5, 3], append_batch_size=False, dtype="float32", ) input_NCDHW = fluid.layers.data( name="input_NCDHW", shape=[2, 3, 5, 5, 3], append_batch_size=False, dtype="float32", ) paddle.static.nn.conv3d( input=input_NDHWC, num_filters=3, filter_size=[3, 3, 3], stride=[1, 1, 1], padding=0, dilation=[1, 1, 1], groups=1, data_format="NCDHW", ) paddle.static.nn.conv3d( input=input_NCDHW, num_filters=3, filter_size=[3, 3, 3], stride=[1, 1, 1], padding=[1, 2, 1, 0, 1, 0], dilation=[1, 1, 1], groups=1, data_format="NCDHW", ) paddle.static.nn.conv3d( input=input_NCDHW, num_filters=3, filter_size=[3, 3, 3], stride=[1, 1, 1], padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]], dilation=[1, 1, 1], groups=1, data_format="NCDHW", ) paddle.static.nn.conv3d( input=input_NDHWC, num_filters=3, filter_size=[3, 3, 3], stride=[1, 1, 1], padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]], dilation=[1, 1, 1], groups=1, data_format="NDHWC", ) paddle.static.nn.conv3d( input=input_NCDHW, num_filters=3, filter_size=[3, 3, 3], stride=[1, 1, 1], padding="SAME", dilation=[1, 1, 1], groups=1, data_format="NCDHW", ) paddle.static.nn.conv3d( input=input_NCDHW, num_filters=3, filter_size=[3, 3, 3], stride=[1, 1, 1], padding="VALID", dilation=[1, 1, 1], groups=1, data_format="NCDHW", ) class TestConv3DAPI_Error(unittest.TestCase): def test_api(self): input = fluid.layers.data( name="input", shape=[2, 5, 5, 5, 4], append_batch_size=False, dtype="float32", ) # ValueError: cudnn def run_1(): paddle.static.nn.conv3d( input=input, num_filters=3, filter_size=3, stride=1, padding=0, dilation=1, groups=1, use_cudnn=[0], data_format="NCDHW", ) self.assertRaises(ValueError, run_1) # ValueError: data_format def run_2(): paddle.static.nn.conv3d( input=input, num_filters=3, filter_size=[3, 3, 3], stride=[1, 1, 1], padding=0, dilation=[1, 1, 1], groups=1, use_cudnn=False, data_format="NCHWC", ) self.assertRaises(ValueError, run_2) # ValueError: padding def run_3(): paddle.static.nn.conv3d( input=input, num_filters=3, filter_size=3, stride=1, padding="SAMEE", dilation=1, groups=1, use_cudnn=False, data_format="NCDHW", ) self.assertRaises(ValueError, run_3) def run_4(): paddle.static.nn.conv3d( input=input, num_filters=3, filter_size=3, stride=1, padding=[[0, 1], [0, 0], [0, 1], [0, 1], [0, 1]], dilation=1, groups=1, use_cudnn=False, data_format="NCDHW", ) self.assertRaises(ValueError, run_4) def run_5(): paddle.static.nn.conv3d( input=input, num_filters=3, filter_size=0, stride=0, padding=[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]], dilation=1, groups=1, use_cudnn=False, data_format="NDHWC", ) self.assertRaises(ValueError, run_5) # ValueError: channel dimmention x = fluid.layers.data( name="x", shape=[2, 5, 5, 5, -1], append_batch_size=False, dtype="float32", ) def run_6(): paddle.static.nn.conv3d( input=x, num_filters=3, filter_size=3, stride=1, padding=0, dilation=1, groups=1, use_cudnn=False, data_format="NDHWC", ) self.assertRaises(ValueError, run_6) # ValueError: groups def run_7(): paddle.static.nn.conv3d( input=input, num_filters=3, filter_size=3, stride=1, padding=0, dilation=1, groups=3, use_cudnn=False, data_format="NDHWC", ) self.assertRaises(ValueError, run_7) # ValueError: filter num def run_8(): paddle.static.nn.conv3d( input=input, num_filters=0, filter_size=0, stride=0, padding=0, dilation=0, groups=1, use_cudnn=False, data_format="NDHWC", ) self.assertRaises(ValueError, run_8) if __name__ == '__main__': paddle.enable_static() unittest.main()