# Python Data Reader Design Doc At training and testing time, PaddlePaddle programs need to read data. To ease the users' work to write data reading code, we define that - A *reader* is a function that reads data (from file, network, random number generator, etc) and yields data items. - A *reader creator* is a function that returns a reader function. - A *reader decorator* is a function, which accepts one or more readers, and returns a reader. - A *batch reader* is a function that reads data (from *reader*, file, network, random number generator, etc) and yields a batch of data items. and provide function which converts reader to batch reader, frequently used reader creators and reader decorators. ## Data Reader Interface Indeed, *data reader* doesn't have to be a function that reads and yields data items. It can be any function with no parameter that creates a iterable (anything can be used in `for x in iterable`): ``` iterable = data_reader() ``` Element produced from the iterable should be a **single** entry of data, **not** a mini batch. That entry of data could be a single item, or a tuple of items. Item should be of [supported type](http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types) (e.g., numpy 1d array of float32, int, list of int) An example implementation for single item data reader creator: ```python def reader_creator_random_image(width, height): def reader(): while True: yield numpy.random.uniform(-1, 1, size=width*height) return reader ``` An example implementation for multiple item data reader creator: ```python def reader_creator_random_image_and_label(width, height, label): def reader(): while True: yield numpy.random.uniform(-1, 1, size=width*height), label return reader ``` ## Batch Reader Interface *batch reader* can be any function with no parameter that creates a iterable (anything can be used in `for x in iterable`). The output of the iterable should be a batch (list) of data items. Each item inside the list must be a tuple. Here are valid outputs: ```python # a mini batch of three data items. Each data item consist three columns of data, each of which is 1. [(1, 1, 1), (2, 2, 2), (3, 3, 3)] # a mini batch of three data items, each data item is a list (single column). [([1,1,1],), ([2,2,2],), ([3,3,3],)] ``` Please note that each item inside the list must be a tuple, below is an invalid output: ```python # wrong, [1,1,1] needs to be inside a tuple: ([1,1,1],). # Otherwise it's ambiguous whether [1,1,1] means a single column of data [1, 1, 1], # or three column of datas, each of which is 1. [[1,1,1], [2,2,2], [3,3,3]] ``` It's easy to convert from reader to batch reader: ```python mnist_train = paddle.dataset.mnist.train() mnist_train_batch_reader = paddle.batch(mnist_train, 128) ``` Also easy to create custom batch reader: ```python def custom_batch_reader(): while True: batch = [] for i in xrange(128): batch.append((numpy.random.uniform(-1, 1, 28*28),)) # note that it's a tuple being appended. yield batch mnist_random_image_batch_reader = custom_batch_reader ``` ## Usage batch reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`: ```python # two data layer is created: image_layer = paddle.layer.data("image", ...) label_layer = paddle.layer.data("label", ...) # ... batch_reader = paddle.batch(paddle.dataset.mnist.train(), 128) paddle.train(batch_reader, {"image":0, "label":1}, 128, 10, ...) ``` ## Data Reader Decorator *Data reader decorator* takes a single or multiple data reader, returns a new data reader. It is similar to a [python decorator](https://wiki.python.org/moin/PythonDecorators), but it does not use `@` syntax. Since we have a strict interface for data readers (no parameter, return a single data item). Data reader can be used flexiable via data reader decorators. Following are a few examples: ### Prefetch Data Since reading data may take time and training can not proceed without data. It is generally a good idea to prefetch data. Use `paddle.reader.buffered` to prefetch data: ```python buffered_reader = paddle.reader.buffered(paddle.dataset.mnist.train(), 100) ``` `buffered_reader` will try to buffer (prefetch) `100` data entries. ### Compose Multiple Data Readers For example, we want to use a source of real images (reusing mnist dataset), and a source of random images as input for [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661). We can do: ```python def reader_creator_random_image(width, height): def reader(): while True: yield numpy.random.uniform(-1, 1, size=width*height) return reader def reader_creator_bool(t): def reader: while True: yield t return reader true_reader = reader_creator_bool(True) false_reader = reader_creator_bool(False) reader = paddle.reader.compose(paddle.dataset.mnist.train(), data_reader_creator_random_image(20, 20), true_reader, false_reader) # Skipped 1 because paddle.dataset.mnist.train() produces two items per data entry. # And we don't care second item at this time. paddle.train(paddle.batch(reader, 128), {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...) ``` ### Shuffle Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader that buffers `n` data entries and shuffle them before a data entry is read. Example: ```python reader = paddle.reader.shuffle(paddle.dataset.mnist.train(), 512) ``` ## Q & A ### Why reader return only a single entry, but not a mini batch? Always returning a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2). We provide function `paddle.batch` to turn (single entry) reader into batch reader. ### Why do we need batch reader, isn't train take reader and batch_size as arguments sufficient? In most of the case, train taking reader and batch_size as arguments would be sufficent. However sometimes user want to customize order of data entries inside a mini batch. Or even change batch size dynamically. ### Why use a dictionary but not a list to provide mapping? We decided to use dictionary (`{"image":0, "label":1}`) instead of list (`["image", "label"]`) is because that user can easily resue item (e.g., using `{"image_a":0, "image_b":0, "label":1}`) or skip item (e.g., using `{"image_a":0, "label":2}`). ### How to create custom data reader creator ```python def image_reader_creator(image_path, label_path, n): def reader(): f = open(image_path) l = open(label_path) images = numpy.fromfile( f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32') images = images / 255.0 * 2.0 - 1.0 labels = numpy.fromfile(l, 'ubyte', count=n).astype("int") for i in xrange(n): yield images[i, :], labels[i] # a single entry of data is created each time f.close() l.close() return reader # images_reader_creator creates a reader reader = image_reader_creator("/path/to/image_file", "/path/to/label_file", 1024) paddle.train(paddle.batch(reader, 128), {"image":0, "label":1}, ...) ``` ### How is `paddle.train` implemented An example implementation of paddle.train could be: ```python def train(batch_reader, mapping, batch_size, total_pass): for pass_idx in range(total_pass): for mini_batch in batch_reader(): # this loop will never end in online learning. do_forward_backward(mini_batch, mapping) ```