# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.fluid import core from paddle.fluid.tests.unittests.eager_op_test import ( OpTest, skip_check_grad_ci, ) ''' test case for s8 * s8 ''' @skip_check_grad_ci( reason="mul_mkldnn_op does not implement grad operator, check_grad is not required." ) class TestMKLDNNMulOpS8S8(OpTest): def setUp(self): self.op_type = "mul" self.init_kernel_type() self.init_data_type() self.init_data() self.attrs = { "use_mkldnn": self.use_mkldnn, "scale_x": self.scale_x, "scale_y": self.scale_y, "scale_out": self.scale_out, "force_fp32_output": self.force_fp32, } def init_kernel_type(self): self.use_mkldnn = True self.force_fp32 = True def init_data_type(self): self.srctype = np.uint8 self.dsttype = np.float32 if self.force_fp32 else np.int8 def init_data(self): self.scale_x = 0.6 self.scale_y = [0.8] self.scale_out = 1.0 # limit random range inside |-127, 127| to avoid overflow on SKL if self.srctype == np.int8: A_data = np.random.randint(-127, 127, (20, 5)).astype(np.int8) else: A_data = np.random.randint(0, 127, (20, 5)).astype(np.uint8) B_data = np.random.uniform(-127, 127, (5, 20)).astype(np.float32) quant_B = np.round(B_data * self.scale_y[0]).astype(np.int_) output = np.dot(A_data, quant_B) scale_output_shift = (self.scale_out) / (self.scale_x * self.scale_y[0]) if self.force_fp32: output = (output * scale_output_shift).astype(self.dsttype) else: output = np.round(output * scale_output_shift).astype(self.dsttype) self.inputs = {'X': A_data, 'Y': B_data} self.outputs = {'Out': output} def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_output_with_place( core.CPUPlace(), atol=0, check_dygraph=False ) ''' test case for s8 * u8 ''' class TestMKLDNNMulOpS8U8(TestMKLDNNMulOpS8S8): def init_data_type(self): self.srctype = np.uint8 self.dsttype = np.float32 if self.force_fp32 else np.int8 ''' test case for s8 * s8 ''' class TestMKLDNNMulOpS8S8WithFlatten(TestMKLDNNMulOpS8S8): def setUp(self): self.op_type = "mul" self.init_kernel_type() self.init_data_type() self.init_data() self.attrs = { "use_mkldnn": self.use_mkldnn, "scale_x": self.scale_x, "scale_y": self.scale_y, "scale_out": self.scale_out, "force_fp32_output": self.force_fp32, "x_num_col_dims": 2, "y_num_col_dims": 2, } def init_data(self): self.scale_x = 0.6 self.scale_y = [0.8] self.scale_out = 1.0 # limit random range inside |-127, 127| to avoid overflow on SKL if self.srctype == np.int8: A_data = np.random.randint(-127, 127, (3, 4, 4, 3)).astype(np.int8) else: A_data = np.random.randint(0, 127, (3, 4, 4, 3)).astype(np.uint8) B_data = np.random.uniform(-127, 127, (2, 6, 1, 2, 3)).astype( np.float32 ) A_data_reshape = A_data.reshape(3 * 4, 4 * 3) B_data_reshape = B_data.reshape(2 * 6, 1 * 2 * 3) quant_B = np.round(B_data_reshape * self.scale_y[0]).astype(np.int_) output = np.dot(A_data_reshape, quant_B) scale_output_shift = (self.scale_out) / (self.scale_x * self.scale_y[0]) if self.force_fp32: output = (output * scale_output_shift).astype(self.dsttype) else: output = np.round(output * scale_output_shift).astype(self.dsttype) output = output.reshape(3, 4, 1, 2, 3) self.inputs = {'X': A_data, 'Y': B_data} self.outputs = {'Out': output} ''' test case for s8 * u8 ''' class TestMKLDNNMulOpS8U8WithFlatten(TestMKLDNNMulOpS8S8WithFlatten): def init_data_type(self): self.srctype = np.uint8 self.dsttype = np.float32 if self.force_fp32 else np.int8 if __name__ == '__main__': paddle.enable_static() unittest.main()