# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle.fluid import core from paddle.fluid.tests.unittests.eager_op_test import ( OpTest, convert_float_to_uint16, ) from paddle.fluid.tests.unittests.test_fusion_gru_op import fusion_gru from paddle.fluid.tests.unittests.test_fusion_lstm_op import ACTIVATION @unittest.skipIf( not core.supports_bfloat16(), "place does not support BF16 evaluation" ) class TestFusionGRUBF16MKLDNNOp(OpTest): def set_confs(self): pass def test_check_output(self): for use_seq in {True, False}: self.attrs['use_seq'] = use_seq self.check_output(check_dygraph=False) def setUp(self): self.op_type = "fusion_gru" self.lod = [[2, 4, 3]] self.M = 3 self.D = 5 self.is_reverse = False self.with_h0 = False self.use_mkldnn = True self._cpu_only = True self.with_bias = True self.act_state = 'tanh' self.act_gate = 'sigmoid' self.origin_mode = False self.use_mkldnn = True self.mkldnn_data_type = "bfloat16" self.force_fp32_output = False self.weights_dtype = 'fp32' self.set_confs() T = sum(self.lod[0]) N = len(self.lod[0]) # fp32 X input for reference implementation and # corressponding bf16 data as input to GRU oneDNN bf16 kernel x_fp32 = np.random.rand(T, self.M).astype('float32') x_bf16 = convert_float_to_uint16(x_fp32) wx_fp32 = np.random.rand(self.M, 3 * self.D).astype('float32') wh_fp32 = np.random.rand(self.D, 3 * self.D).astype('float32') wx_bf16 = convert_float_to_uint16(wx_fp32) wh_bf16 = convert_float_to_uint16(wh_fp32) # bias is fp32 despite other inputs being in bf16 bias = ( np.random.rand(1, 3 * self.D).astype('float32') if self.with_bias else np.zeros((1, 3 * self.D), dtype='float32') ) h0_fp32 = ( np.random.rand(N, self.D).astype('float32') if self.with_h0 else np.zeros((N, self.D), dtype='float32') ) _, _, _, hidden = fusion_gru( x_fp32, self.lod, h0_fp32, wx_fp32, wh_fp32, bias, self.is_reverse, self.origin_mode, ACTIVATION[self.act_state], ACTIVATION[self.act_gate], ) hidden_bf16 = convert_float_to_uint16(hidden) if self.weights_dtype == 'bf16': self.inputs = { 'X': (x_bf16, self.lod), 'WeightX': wx_bf16, 'WeightH': wh_bf16, } elif self.weights_dtype == 'fp32': self.inputs = { 'X': (x_bf16, self.lod), 'WeightX': wx_fp32, 'WeightH': wh_fp32, } if self.with_bias: self.inputs['Bias'] = bias h0_bf16 = convert_float_to_uint16(h0_fp32) if self.with_h0: if self.weights_dtype == 'bf16': self.inputs['H0'] = h0_bf16 elif self.weights_dtype == 'fp32': self.inputs['H0'] = h0_fp32 self.outputs = {'Hidden': (hidden, self.lod)} self.attrs = { 'activation': self.act_state, 'gate_activation': self.act_gate, 'is_reverse': self.is_reverse, 'origin_mode': self.origin_mode, 'force_fp32_output': self.force_fp32_output, 'use_mkldnn': self.use_mkldnn, 'mkldnn_data_type': self.mkldnn_data_type, } class TestFusionGRUINT8MKLDNNOp2(TestFusionGRUBF16MKLDNNOp): def set_confs(self): self.origin_mode = False class TestFusionGRUINT8MKLDNNOp3(TestFusionGRUBF16MKLDNNOp): def set_confs(self): self.with_bias = False class TestFusionGRUINT8MKLDNNBF16WeightsOp(TestFusionGRUBF16MKLDNNOp): def set_confs(self): self.weights_dtype = 'bf16' if __name__ == "__main__": from paddle import enable_static enable_static() unittest.main()