# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.fluid import core from paddle.fluid.tests.unittests.eager_op_test import ( OpTest, OpTestTool, convert_float_to_uint16, ) @OpTestTool.skip_if_not_cpu_bf16() class TestFlattenOneDNNOp(OpTest): def setUp(self): self.set_op_type() self.init_test_case() self.set_inputs() self.attrs = {"axis": self.axis, 'use_mkldnn': True} self.ori_shape = self.inputs['X'].shape self.outputs = {"Out": self.inputs["X"].copy().reshape(self.new_shape)} def set_inputs(self): self.inputs = {"X": np.random.random(self.in_shape).astype("float32")} def set_op_type(self): self.op_type = "flatten" def test_check_output(self): self.check_output_with_place(core.CPUPlace()) def test_check_grad(self): self.check_grad_with_place(core.CPUPlace(), ["X"], "Out") def init_test_case(self): self.in_shape = (3, 2, 2, 10) self.axis = 1 self.new_shape = (3, 40) class TestFlattenOneDNNOp1(TestFlattenOneDNNOp): def init_test_case(self): self.in_shape = (3, 2, 2, 10) self.axis = 0 self.new_shape = (1, 120) class TestFlattenOneDNNOpSixDims(TestFlattenOneDNNOp): def init_test_case(self): self.in_shape = (3, 2, 3, 2, 4, 4) self.axis = 4 self.new_shape = (36, 16) class TestFlatten2OneDNNOp(TestFlattenOneDNNOp): def set_op_type(self): self.op_type = "flatten2" class TestFlatten2OneDNNOp1(TestFlattenOneDNNOp1): def set_op_type(self): self.op_type = "flatten2" class TestFlatten2OneDNNOpSixDims(TestFlattenOneDNNOpSixDims): def set_op_type(self): self.op_type = "flatten2" # BF16 TESTS def create_flatten_bf16_test_classes(parent): class TestFlatten2BF16OneDNNOp(parent): def set_inputs(self): self.dtype = np.uint16 self.inputs = { "X": np.random.random(self.in_shape).astype("uint16") } def calculate_grads(self): self.dout = self.outputs['Out'] self.dx = np.reshape(self.dout, self.ori_shape) def test_check_output(self): self.check_output_with_place( core.CPUPlace(), no_check_set=["XShape"] ) def test_check_grad(self): self.calculate_grads() self.check_grad_with_place( core.CPUPlace(), ["X"], "Out", user_defined_grads=[self.dx], user_defined_grad_outputs=[self.dout], ) cls_name = "{}_{}".format(parent.__name__, "Flatten2_BF16") TestFlatten2BF16OneDNNOp.__name__ = cls_name globals()[cls_name] = TestFlatten2BF16OneDNNOp class TestFlattenBF16OneDNNOp(parent): def set_op_type(self): self.dtype = np.uint16 self.op_type = "flatten" def set_inputs(self): self.dtype = np.uint16 self.inputs = { "X": np.random.random(self.in_shape).astype("uint16") } def set_outputs(self): self.outputs = {"Out": self.x.reshape(self.new_shape)} def calculate_grads(self): self.dout = self.outputs['Out'] self.dx = np.reshape(self.dout, self.ori_shape) def test_check_output(self): self.check_output_with_place(core.CPUPlace()) def test_check_grad(self): self.calculate_grads() self.check_grad_with_place( core.CPUPlace(), ["X"], "Out", user_defined_grads=[self.dx], user_defined_grad_outputs=[convert_float_to_uint16(self.dout)], ) cls_name = "{}_{}".format(parent.__name__, "Flatten_BF16") TestFlattenBF16OneDNNOp.__name__ = cls_name globals()[cls_name] = TestFlattenBF16OneDNNOp create_flatten_bf16_test_classes(TestFlatten2OneDNNOp) create_flatten_bf16_test_classes(TestFlatten2OneDNNOp1) create_flatten_bf16_test_classes(TestFlatten2OneDNNOpSixDims) if __name__ == "__main__": paddle.enable_static() unittest.main()