# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle import enable_static from paddle.fluid.tests.unittests.eager_op_test import skip_check_grad_ci from paddle.fluid.tests.unittests.test_elementwise_mul_op import ( ElementwiseMulOp, ) class TestMKLDNNElementwiseMulOp(ElementwiseMulOp): def init_kernel_type(self): self.use_mkldnn = True def init_dtype(self): self.dtype = np.float32 class TestMKLDNNElementwiseMulOp2(TestMKLDNNElementwiseMulOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.multiply(self.x, self.y) class TestMKLDNNElementwiseMulOp3(TestMKLDNNElementwiseMulOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) self.out = np.multiply(self.x, self.y) class TestMKLDNNElementwiseMulOp4(TestMKLDNNElementwiseMulOp): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype) self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype) self.out = np.multiply(self.x, self.y) # TODO(jczaja): Enable when grad is ready def test_check_grad_normal(self): pass def test_check_grad_ingore_y(self): pass class TestMKLDNNElementwiseMulOp5(TestMKLDNNElementwiseMulOp): def init_input_output(self): self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) self.out = np.multiply(self.x, self.y) # TODO(jczaja): Enable when grad is ready def test_check_grad_normal(self): pass def test_check_grad_ingore_y(self): pass def test_check_grad_ingore_x(self): pass class TestMKLDNNElementwiseMulOpZeroDim(TestMKLDNNElementwiseMulOp): def init_input_output(self): self.x = np.random.random((100,)).astype(self.dtype) self.y = np.array(3.0).astype(self.dtype) self.out = np.multiply(self.x, self.y) def test_check_grad_normal(self): pass def test_check_grad_ingore_y(self): pass def test_check_grad_ingore_x(self): pass class TestMKLDNNElementwiseMulOpZeroDim2(TestMKLDNNElementwiseMulOp): def init_input_output(self): self.x = np.array(3.0).astype(self.dtype) self.y = np.random.random((100,)).astype(self.dtype) self.out = np.multiply(self.x, self.y) def test_check_grad_normal(self): pass def test_check_grad_ingore_y(self): pass def test_check_grad_ingore_x(self): pass class TestMKLDNNElementwiseMulOpZeroDim3(TestMKLDNNElementwiseMulOp): def init_input_output(self): self.x = np.array(3.0).astype(self.dtype) self.y = np.array(3.0).astype(self.dtype) self.out = np.multiply(self.x, self.y) def test_check_grad_normal(self): pass def test_check_grad_ingore_y(self): pass def test_check_grad_ingore_x(self): pass ''' INT8 Tests ''' @skip_check_grad_ci( reason="oneDNN's int8 elementwise_ops don't implemend grad kernel." ) class TestInt8(ElementwiseMulOp): def init_kernel_type(self): self.use_mkldnn = True self._cpu_only = True def init_dtype(self): self.dtype = np.int8 def init_input_output(self): self.x = np.random.randint(0, 3, (12, 9)).astype("int8") self.y = np.random.randint(0, 3, (12, 9)).astype("int8") self.out = np.multiply(self.x, self.y) def init_scales(self): self.attrs['Scale_x'] = 1.0 self.attrs['Scale_y'] = 1.0 self.attrs['Scale_out'] = 1.0 def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.init_scales() self.check_output(check_dygraph=(not self.use_mkldnn)) def test_check_grad_normal(self): pass def test_check_grad_ingore_x(self): pass def test_check_grad_ingore_y(self): pass class TestInt8Scales(TestInt8): def quantize(self, tensor, dt="int8"): max_int = 127.0 if dt == "int8" else 255.0 scale = max_int / np.abs(np.amax(tensor)) quantized = np.round(scale * tensor).astype(dt) return scale, quantized def init_input_output(self): self.x_f = np.random.random((100,)).astype("float") self.y_f = np.random.random((100,)).astype("float") self.out_f = np.multiply(self.x_f, self.y_f) self.scale_x, self.x = self.quantize(self.x_f) self.scale_y, self.y = self.quantize(self.y_f) self.scale_o, self.out = self.quantize(self.out_f) def init_scales(self): self.attrs['Scale_x'] = self.scale_x self.attrs['Scale_y'] = self.scale_y self.attrs['Scale_out'] = self.scale_o def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.init_scales() int_atol = 1 # different quantization techniques self.check_output(check_dygraph=(not self.use_mkldnn), atol=int_atol) class TestUint8Scales(TestInt8Scales): def init_input_output(self): self.x_f = np.random.random((100,)).astype("float") self.y_f = np.random.random((100,)).astype("float") self.out_f = np.multiply(self.x_f, self.y_f) self.scale_x, self.x = self.quantize(self.x_f, "uint8") self.scale_y, self.y = self.quantize(self.y_f, "uint8") self.scale_o, self.out = self.quantize(self.out_f, "uint8") def init_dtype(self): self.dtype = np.uint8 if __name__ == '__main__': enable_static() unittest.main()