# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle import enable_static from paddle.fluid.tests.unittests.eager_op_test import OpTest from paddle.fluid.tests.unittests.test_conv2d_transpose_op import ( TestConv2DTransposeOp, ) def conv2d_bias_naive(out, bias): _, out_c, _, _ = out.shape for l in range(out_c): out[:, l, :, :] = out[:, l, :, :] + bias[l] return out class TestConv2DTransposeMKLDNNOp(TestConv2DTransposeOp): def test_check_grad(self): return def test_check_grad_no_input(self): return def test_check_grad_no_filter(self): return def init_op_type(self): self.data_format = "NCHW" self.op_type = "conv2d_transpose" self._cpu_only = True def init_test_case(self): self.use_mkldnn = True self.is_test = True self.pad = [0, 0] self.fuse_bias = False self.bias_size = None self.fuse_activation = "" self.fuse_alpha = 0.0 self.fuse_beta = 0.0 self.stride = [1, 1] self.dilations = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3] self.groups = 1 self.dtype = np.float32 def setUp(self): TestConv2DTransposeOp.setUp(self) output = self.outputs['Output'] if self.fuse_bias and self.bias_size is not None: bias = np.random.random(self.bias_size).astype(self.dtype) output = conv2d_bias_naive(output, bias) output = output.astype(self.dtype) self.attrs['fuse_bias'] = self.fuse_bias self.inputs['Bias'] = OpTest.np_dtype_to_fluid_dtype(bias) if self.fuse_activation == "relu": output = np.maximum(output, 0).astype(self.dtype) output = output.astype(self.dtype) self.attrs['fuse_activation'] = self.fuse_activation self.attrs['fuse_alpha'] = self.fuse_alpha self.attrs['fuse_beta'] = self.fuse_beta self.attrs['mkldnn_data_type'] = 'float32' self.attrs['force_fp32_output'] = False self.outputs['Output'] = output class TestMKLDNNFuseBias(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [1, 1] self.fuse_bias = True self.bias_size = [6] class TestMKLDNNWithPad(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [1, 1] self.input_size = [2, 3, 10, 10] class TestMKLDNNWithStride(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [1, 1] self.stride = [2, 2] self.input_size = [2, 3, 6, 6] # NCHW class TestMKLDNNWithAsymPad(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [0, 0, 1, 2] self.padding_algorithm = "EXPLICIT" class TestMKLDNNWithSamePad(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [0, 0] self.padding_algorithm = "SAME" class TestMKLDNNWithValidPad(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [1, 1] self.padding_algorithm = "VALID" class TestMKLDNNWithValidPad_NHWC(TestMKLDNNWithValidPad): def init_test_case(self): super().init_test_case() self.data_format = "NHWC" N, C, H, W = self.input_size self.input_size = [N, H, W, C] class TestConv2DTransposeMKLDNNWithDilationsExplicitPad( TestConv2DTransposeMKLDNNOp ): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.stride = [2, 1] self.dilations = [1, 2] self.groups = 1 self.input_size = [4, 3, 8, 7] # NCHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 4, 3] self.pad = [1, 3, 2, 1] self.padding_algorithm = "EXPLICIT" class TestMKLDNNWithGroups(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [1, 1] self.groups = 2 self.input_size = [2, 4, 5, 5] # NCHW f_c = self.input_size[1] self.filter_size = [f_c, 3, 3, 3] class TestMKLDNNWithGroups_NHWC(TestConv2DTransposeMKLDNNOp): def init_test_case(self): TestConv2DTransposeMKLDNNOp.init_test_case(self) self.pad = [1, 1] self.groups = 2 self.input_size = [2, 5, 5, 4] # NHWC f_c = self.input_size[-1] self.filter_size = [f_c, 3, 3, 3] self.data_format = 'NHWC' if __name__ == '__main__': enable_static() unittest.main()