// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/full_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/complex.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/common/memory_utils.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/visit_type.h" namespace phi { template void FullKernel(const Context& dev_ctx, const IntArray& shape, const Scalar& val, DataType dtype, DenseTensor* out) { using XPUInTDType = typename XPUTypeTrait::Type; out->Resize(phi::make_ddim(shape.GetData())); int numel = out->numel(); dev_ctx.template Alloc(out); auto out_data = reinterpret_cast(out->data()); if (numel > 0) { int r = xpu::constant(dev_ctx.x_context(), out_data, out->numel(), static_cast(val.to())); PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); } } template void FullLikeKernel(const Context& dev_ctx, const DenseTensor& x, const Scalar& val, DataType dtype, DenseTensor* out) { dev_ctx.template Alloc(out); auto value = val.to(); using XPUInTDType = typename XPUTypeTrait::Type; using CommonType = typename std::common_type< float, typename std::conditional::value, float, T>::type>::type; auto common_type_value = static_cast(value); PADDLE_ENFORCE_EQ( (common_type_value >= static_cast(std::numeric_limits::lowest())) && (common_type_value <= static_cast(std::numeric_limits::max())), true, phi::errors::InvalidArgument( "The filled value is out of range for target type, " "current kernel type is %s, the range should between %f " "and %f, but now value is %f.", typeid(T).name(), static_cast(std::numeric_limits::lowest()), static_cast(std::numeric_limits::max()), static_cast(value))); PADDLE_ENFORCE_EQ(std::isnan(value), false, phi::errors::InvalidArgument("The filled value is NaN.")); PADDLE_ENFORCE_EQ(std::isinf(value), false, phi::errors::InvalidArgument("The filled value is Inf.")); auto out_data = reinterpret_cast(out->data()); if (out->numel() > 0) { int r = xpu::constant(dev_ctx.x_context(), out_data, out->numel(), static_cast(value)); PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); } } template void FullBatchSizeLikeKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& shape, const Scalar& val, DataType dtype, int x_batch_size_dim, int out_batch_size_dim, DenseTensor* out) { if (x.lod().size() && x_batch_size_dim == 0) { // set the correct batch size for the LoDTensor. auto odims = out->dims(); odims[out_batch_size_dim] = static_cast(x.lod().back().size()) - 1; FullKernel(dev_ctx, phi::vectorize(odims), val, dtype, out); } FullLikeKernel(dev_ctx, x, val, dtype, out); } } // namespace phi PD_REGISTER_KERNEL(full, XPU, ALL_LAYOUT, phi::FullKernel, float, int8_t, uint8_t, int16_t, int, int64_t, bool, phi::dtype::float16) {} PD_REGISTER_KERNEL(full_like, XPU, ALL_LAYOUT, phi::FullLikeKernel, float, uint8_t, int16_t, int, int64_t, bool, phi::dtype::float16) { kernel->InputAt(0).SetBackend(phi::Backend::ALL_BACKEND); } PD_REGISTER_KERNEL(full_batch_size_like, XPU, ALL_LAYOUT, phi::FullBatchSizeLikeKernel, float, int, int64_t, bool, phi::dtype::float16) { kernel->InputAt(0).SetBackend(phi::Backend::ALL_BACKEND); }