/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include // NOLINT #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/imperative/cncl_context.h" #include "paddle/fluid/platform/gen_comm_id_helper.h" #include "gtest/gtest.h" namespace imperative = paddle::imperative; namespace platform = paddle::platform; namespace framework = paddle::framework; // Node1: FLAGS_selected_mlus=0 PADDLE_TRAINER_ID=0 ./cncl_context_test // Node2: FLAGS_selected_mlus=1 PADDLE_TRAINER_ID=1 ./cncl_context_test int nrings = 1; imperative::ParallelStrategy GetStrategy(int local_rank) { std::vector eps = {"127.0.0.1:9866", "localhost:9867"}; imperative::ParallelStrategy strategy; strategy.trainer_endpoints_ = eps; strategy.current_endpoint_ = eps[local_rank]; strategy.nranks_ = 2; strategy.local_rank_ = local_rank; strategy.nrings_ = nrings; return strategy; } #if defined(PADDLE_WITH_CNCL) void Broadcast(int local_rank, int device_id) { int data_size = 4; float test_data = 7; const auto& place = platform::MLUPlace(device_id); platform::MLUDeviceContext ctx(place); imperative::CNCLParallelContext cpc(GetStrategy(local_rank), place); // init cpc.Init(); framework::Variable* src_dev_var(new framework::Variable()); auto* src_dev_tensor = src_dev_var->GetMutable(); src_dev_tensor->mutable_data(phi::make_ddim({data_size}), place); // fill data for rank 0 only std::vector src_vec; if (local_rank == 0) { for (int i = 0; i < data_size; ++i) { src_vec.push_back(test_data); } framework::TensorFromVector(src_vec, ctx, src_dev_tensor); } ctx.Wait(); // call broadcast cpc.Broadcast(src_dev_var, 0); std::this_thread::sleep_for(std::chrono::milliseconds(1000)); // check result std::vector dst_vec; framework::TensorToVector(*src_dev_tensor, ctx, &dst_vec); ctx.Wait(); for (int i = 0; i < data_size; ++i) { EXPECT_EQ(dst_vec[i], test_data); } } TEST(Broadcast, Run) { if (platform::GetMLUDeviceCount() >= 2) { int local_rank = atoi(getenv("PADDLE_TRAINER_ID")); int device_id = atoi(getenv("FLAGS_selected_mlus")); Broadcast(local_rank, device_id); } } void AllReduceByStream(int local_rank, int device_id) { int data_size = 32; const auto& place = platform::MLUPlace(device_id); platform::MLUDeviceContext ctx(place); imperative::CNCLParallelContext cpc(GetStrategy(local_rank), place); // init cpc.Init(); // input data framework::Variable* src_dev_var(new framework::Variable()); auto* src_dev_tensor = src_dev_var->GetMutable(); src_dev_tensor->mutable_data(phi::make_ddim({data_size}), place); // fill input data std::vector src_vec; for (int i = 0; i < data_size; ++i) { src_vec.push_back(1.0 + local_rank); } framework::TensorFromVector(src_vec, ctx, src_dev_tensor); ctx.Wait(); // output data framework::Variable* dst_dev_var(new framework::Variable()); auto* dst_dev_tensor = dst_dev_var->GetMutable(); dst_dev_tensor->mutable_data(phi::make_ddim({data_size}), place); // call allreduce cpc.AllReduceByStream(*src_dev_var, dst_dev_var, 0, false); std::this_thread::sleep_for(std::chrono::milliseconds(1000)); // check result std::vector dst_vec; framework::TensorToVector(*dst_dev_tensor, ctx, &dst_vec); ctx.Wait(); EXPECT_EQ(dst_vec.size(), src_vec.size()); for (int i = 0; i < data_size; ++i) { EXPECT_EQ(dst_vec[i], 3.0); } } TEST(AllReduceByStream, Run) { if (platform::GetMLUDeviceCount() >= 2) { int local_rank = atoi(getenv("PADDLE_TRAINER_ID")); int device_id = atoi(getenv("FLAGS_selected_mlus")); AllReduceByStream(local_rank, device_id); } } #endif