# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import contextlib from collections import abc from enum import Enum from math import inf import numpy as np from types import MethodType import paddle import paddle.distributed as dist from paddle import _C_ops from paddle.fluid import core from paddle.fluid import layers from paddle.fluid.dygraph import to_variable from paddle.fluid.framework import dygraph_only from paddle.fluid.dygraph import base as imperative_base class Taskflow: """ Task flows, one way linked list for task acquisition. """ def __init__(self, task, callback): self.task = task self.callback = callback class Type(Enum): """ Type of trainable parameters """ fp16 = paddle.float16 fp32 = paddle.float32 class ShardingClipGrad: def __init__(self, clip, group, device): self._clip = clip self._group = group self._device = device @imperative_base.no_grad def _dygraph_clip(self, params_grads): params_and_grads = [] sum_square_fp16 = [] sum_square_fp32 = [] for p, g in params_grads: if g is None or getattr(p, 'need_clip', True) is False: continue merge_grad = g if g.type == core.VarDesc.VarType.SELECTED_ROWS: merge_grad = layers.get_tensor_from_selected_rows( layers.merge_selected_rows(g)) square = layers.square(merge_grad) sum_square = layers.reduce_sum(square) if p.dtype == paddle.float16: sum_square_fp16.append(sum_square) elif p.dtype == paddle.float32: sum_square_fp32.append(sum_square) # global norm of non-distributed FP16 params_and_grads if len(sum_square_fp16) == 0: global_norm_fp16 = paddle.to_tensor([0.], dtype=paddle.float32) else: global_norm_fp16 = layers.concat(sum_square_fp16) global_norm_fp16 = layers.reduce_sum(global_norm_fp16) global_norm_fp16 = paddle.cast( global_norm_fp16, dtype=paddle.float32) # global norm of non-distributed FP32 params_and_grads global_norm_fp32 = layers.concat(sum_square_fp32) if len( sum_square_fp32) != 0 else paddle.to_tensor( [0.], dtype=paddle.float32) global_norm_fp32 = layers.reduce_sum(global_norm_fp32) global_norm_var = global_norm_fp16 + global_norm_fp32 # add all reduce to get global norm of distributed params_and_grads dev_id = int(self._device.split(":")[1]) with device_guard(dev_id, "gpu"): paddle.distributed.all_reduce(global_norm_var, group=self._group) global_norm_var = layers.sqrt(global_norm_var) max_global_norm = layers.fill_constant( shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm) clip_var = layers.elementwise_div( x=max_global_norm, y=layers.elementwise_max( x=global_norm_var, y=max_global_norm)) clip_var_fp16 = paddle.cast(clip_var, paddle.float16) for p, g in params_grads: if g is None: continue if getattr(p, 'need_clip', True) is False: params_and_grads.append((p, g)) continue if p.dtype == paddle.float16: new_grad = layers.elementwise_mul(x=g, y=clip_var_fp16) else: new_grad = layers.elementwise_mul(x=g, y=clip_var) params_and_grads.append((p, new_grad)) return params_and_grads def __getattr__(self, item): return getattr(self._clip, item) def __call__(self, params_grads): return self._dygraph_clip(params_grads) @contextlib.contextmanager def device_guard(dev_id=0, device="cpu"): origin_device = paddle.device.get_device() if device == "cpu": paddle.set_device(device) elif device == "gpu": paddle.set_device("gpu:{}".format(dev_id)) try: yield finally: paddle.set_device(origin_device) @dygraph_only def ShardingScaler(scaler, sharding_group): def unscale_method(self, optimizer): if not self._enable: return param_grads = [] param_grads_fp16 = [] param_grads_fp32 = [] if getattr(optimizer, '_param_groups', None) and isinstance( optimizer._param_groups[0], dict): for group in optimizer._param_groups: for param in group['params']: if param._grad_ivar() is not None: param_grads.append(param._grad_ivar()) if param._grad_ivar( ).dtype == core.VarDesc.VarType.FP16: param_grads_fp16.append(param._grad_ivar()) else: param_grads_fp32.append(param._grad_ivar()) else: param_grads = [ param._grad_ivar() for param in optimizer._parameter_list if param._grad_ivar() is not None ] param_grads_fp16 = [ param._grad_ivar() for param in optimizer._parameter_list if (param._grad_ivar() is not None ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP16 ) ] param_grads_fp32 = [ param._grad_ivar() for param in optimizer._parameter_list if (param._grad_ivar() is not None ) and (param._grad_ivar().dtype == core.VarDesc.VarType.FP32 ) ] temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool)) temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool)) if len(param_grads_fp16): _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale, param_grads_fp16, temp_found_inf_fp16) if len(param_grads_fp32): _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale, param_grads_fp32, temp_found_inf_fp32) self._found_inf = 1 if temp_found_inf_fp16 or temp_found_inf_fp32 else 0 is_found_inf = paddle.to_tensor([self._found_inf], dtype="int32") paddle.distributed.all_reduce( is_found_inf, op=paddle.distributed.ReduceOp.MAX, group=sharding_group) self._found_inf = is_found_inf.numpy()[0] scaler._unscale = MethodType(unscale_method, scaler) return scaler