# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from collections import defaultdict from collections.abc import Iterable import contextlib from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator import os import re import traceback import copy from types import MethodType, FunctionType import numpy as np import subprocess import multiprocessing import sys import logging from .proto import framework_pb2, data_feed_pb2 from . import core from . import unique_name import paddle.version as fluid_version import warnings import functools from .variable_index import _getitem_impl_, _setitem_impl_ import threading __all__ = [ 'Program', 'default_startup_program', 'default_main_program', 'program_guard', 'name_scope', 'ipu_shard_guard', 'set_ipu_shard', 'cuda_places', 'cpu_places', 'xpu_places', 'mlu_places', 'cuda_pinned_places', '_non_static_mode', 'in_dygraph_mode', 'is_compiled_with_cinn', 'is_compiled_with_cuda', 'is_compiled_with_rocm', 'is_compiled_with_xpu', 'is_compiled_with_npu', 'Variable', 'require_version', 'device_guard', 'set_flags', 'get_flags', ] EMPTY_VAR_NAME = core.kEmptyVarName() TEMP_VAR_NAME = core.kTempVarName() GRAD_VAR_SUFFIX = core.kGradVarSuffix() ZERO_VAR_SUFFIX = core.kZeroVarSuffix() CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName() # use thread local to create thread save global variables. class GlobalThreadLocal(threading.local): def __init__(self): """ init the thread local data. TODO(xiongkun): how to access another thread local data ? """ global _dygraph_tracer_ self._in_declarative_mode_ = False self._functional_dygraph_context_manager = None self._dygraph_tracer_ = _dygraph_tracer_ self._in_eager_mode_ = True def __str__(self): strings = [] strings.append( "_in_declarative_mode_:" + str(self._in_declarative_mode_) ) strings.append( "_functional_dygraph_context_manager:" + str(self._functional_dygraph_context_manager) ) strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_)) strings.append("_in_eager_mode_:" + str(self._in_eager_mode_)) return "\n".join(strings) def __setattr__(self, name, val): if name == '_dygraph_tracer_': global _dygraph_tracer_ _dygraph_tracer_ = val self.__dict__[name] = val _dygraph_tracer_ = None global_var = GlobalThreadLocal() _global_expected_place_ = None _current_device = None global_prog_seed = 0 _current_pipeline_stage = None _already_patch_eager_tensor = False _already_patch_varbase = False _current_cuda_graph_mode = None _global_flags_ = core.globals() _enable_standalone_executor_ = os.environ.get( 'FLAGS_USE_STANDALONE_EXECUTOR', None ) _dy2st_enable_standalone_executor_ = os.environ.get( 'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1 ) _cuda_graph_enable_standalone_executor_ = os.environ.get( 'FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR', 0 ) # Some explanation of our execution system 2022.03 # For now we have 3 kinds of execution system, since we refactored dygraph mode to # build a fast execution system for dynamic mode. But we can't just remove all legacy # code once we present the new system for some historical reason. That's why we have # these flags. # # 1. _non_static_mode(): # _non_static_mode means we are now running in legacy dygraph mode or dygraph mode. # 2. dygraph_mode(): # This flags inidicates we are now running in dygraph mode which called eager mode before. # 3. _in_legacy_dygraph(): # This flags has been deprecated # # They have a relation ship as below: # Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode # # Why we have to make different of _in_legacy_dygraph and dygraph_mode? # In some performance issue, we find that python if statement cause server performance problem # and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags # to make sure in most case, we find new dygraph mode first with only one if statement. def _update_monkey_methods(is_eager): """ Update monkey methods of VarBase or eager.Tensor while switching eager mode and legacy mode. """ from paddle import _C_ops, _legacy_C_ops from .dygraph.varbase_patch_methods import monkey_patch_varbase from .dygraph import monkey_patch_math_varbase global _already_patch_eager_tensor global _already_patch_varbase assert isinstance(is_eager, bool) # switch into eager mode if is_eager: if not _already_patch_eager_tensor: monkey_patch_varbase() monkey_patch_math_varbase() _already_patch_eager_tensor = True # switch back into legacy mode else: if not _already_patch_varbase: monkey_patch_varbase() monkey_patch_math_varbase() _already_patch_varbase = True # switch Paddle.Tensor bind type _switch_tensor_bind_type(is_eager) def _switch_tensor_bind_type(is_eager): import paddle if is_eager: paddle.Tensor = core.eager.Tensor else: paddle.Tensor = core.VarBase paddle.Tensor.__qualname__ = 'Tensor' def _enable_legacy_dygraph(): global_var._in_eager_mode_ = False _update_monkey_methods(is_eager=False) def _disable_legacy_dygraph(): global_var._in_eager_mode_ = True _update_monkey_methods(is_eager=True) def _in_eager_without_dygraph_check(): return global_var._in_eager_mode_ # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but # only GPU/CPU. Remove this after we improve this feature. _is_first_import_ = True def _fallback_legacy_dygraph(): global _is_first_import_ need_fallback = False # Only enable eager on CPU/GPU/XPU is_not_support = ( core.is_compiled_with_npu() or core.is_compiled_with_ipu() or core.is_compiled_with_mlu() ) if global_var._in_eager_mode_ and is_not_support: # switch into legacy dygraph mode warnings.warn( "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. " ) global_var._in_eager_mode_ = False if not _is_first_import_: _enable_legacy_dygraph() need_fallback = True need_fallback = False _is_first_import_ = False return need_fallback # switch into legacy mode if need while import paddle _fallback_legacy_dygraph() def in_dygraph_mode(): """ .. note:: Dynamic graph mode is turn ON by default since paddle 2.0.0 This API checks whether paddle runs in dynamic graph mode. You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ , and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_ . Returns: bool: Whether paddle runs in dynamic graph mode. Examples: .. code-block:: python import paddle print(paddle.in_dynamic_mode()) # True, dynamic mode is turn ON by default since paddle 2.0.0 paddle.enable_static() print(paddle.in_dynamic_mode()) # False, Now we are in static graph mode paddle.disable_static() print(paddle.in_dynamic_mode()) # True, Now we are in dynamic mode """ return ( global_var._dygraph_tracer_ is not None ) and global_var._in_eager_mode_ def _non_static_mode(): return global_var._dygraph_tracer_ is not None @signature_safe_contextmanager def _test_eager_guard(place=None): # FIXME(dev): We haven't fully verified eager mode on NPU et.al but # only GPU/CPU/XPU. Remove this after we improve this feature. already_fallback = _fallback_legacy_dygraph() if not already_fallback: _disable_legacy_dygraph() try: yield finally: pass global_ipu_index = -1 global_ipu_stage = -1 ipu_index_attr_name = 'ipu_index' ipu_stage_attr_name = 'ipu_stage' @signature_safe_contextmanager def _enable_standalone_executor(enable=True): global _enable_standalone_executor_ original_ = _enable_standalone_executor_ _enable_standalone_executor_ = enable try: yield finally: _enable_standalone_executor_ = original_ @signature_safe_contextmanager def ipu_shard_guard(index=-1, stage=-1): """ Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining. Args: index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3'). The default value is -1, which means the Op only run on IPU 0. stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3'). The sharded model will be computed from small to large. The default value is -1, which means no pipelining computation order and run Ops in terms of graph. Note: Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer to :ref:`api_paddle_static_IpuStrategy`. Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer to :ref:`api_paddle_static_IpuStrategy`. A index is allowed to match none stage or a stage. A stage is only allowed to match a new or duplicated index. Examples: .. code-block:: python # required: ipu import paddle paddle.enable_static() a = paddle.static.data(name='data', shape=[None, 1], dtype='int32') with paddle.static.ipu_shard_guard(index=0, stage=0): b = a + 1 with paddle.static.ipu_shard_guard(index=1, stage=1): c = b + 1 with paddle.static.ipu_shard_guard(index=0, stage=2): d = c + 1 """ if not core.is_compiled_with_ipu(): raise ValueError( "Can not use this function since PaddlePaddle is not compiled with IPU" ) global global_ipu_index global global_ipu_stage prev_ipu_index = global_ipu_index prev_ipu_stage = global_ipu_stage global_ipu_index = index global_ipu_stage = stage try: yield finally: global_ipu_index = prev_ipu_index global_ipu_stage = prev_ipu_stage def set_ipu_shard(call_func, index=-1, stage=-1): """ Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding. Note: Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` . Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` . An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index. Args: call_func(Layer|function): Specify the call function to be wrapped. index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’). The default value is -1, which means the Op only run on IPU 0. stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’). The sharded model will be computed from small to large. The default value is -1, which means no pipelining computation order and run Ops in terms of graph. Returns: The wrapped call function. Examples: .. code-block:: python # required: ipu import paddle paddle.enable_static() a = paddle.static.data(name='data', shape=[None, 1], dtype='float32') relu = paddle.nn.ReLU() relu = paddle.static.set_ipu_shard(relu, index=1, stage=1) relu(a) """ def decorate(func): def wrapper(*args, **kwargs): with ipu_shard_guard(index=index, stage=stage): return func(*args, **kwargs) return wrapper from .dygraph.layers import Layer if not isinstance(call_func, Layer): if callable(call_func): return decorate(call_func) else: raise TypeError( "Unsupported type. Only accept paddle.nn.Layer or function." ) # patch paddle.nn.Layer class BlockFn(type(call_func)): def __call__(self, *args, **kwargs): with ipu_shard_guard(index=index, stage=stage): return super().__call__(*args, **kwargs) BlockFn.__name__ = type(call_func).__name__ call_func.__class__ = BlockFn return call_func def require_version(min_version, max_version=None): """ Check if the installed version of PaddlePaddle is in [min_version, max_version], if the installed version is lower than ``min_version`` or higher than ``max_version``, an exception will be thrown, NO returns if the installed version is satisfied. Args: min_version (str): the minimum version required (like '1.4.0'). max_version (str, optional): the max version required (like '1.6.0'), default is None, meaning any version equal or higher than ``min_version`` is acceptable. Returns: None. Raises: TypeError: if the type of ``min_version`` is not str. TypeError: if the type of ``max_version`` is not str or type(None). ValueError: if the value of ``min_version`` is not in version format. ValueError: if the value of ``max_version`` is not in version format or None. Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``. Examples: .. code-block:: python import paddle.fluid as fluid # any version >= 0.1.0 is acceptable. fluid.require_version('0.1.0') # if 0.1.0 <= version <= 10.0.0, it is acceptable. fluid.require_version(min_version='0.1.0', max_version='10.0.0') """ if not isinstance(min_version, str): raise TypeError( "The type of 'min_version' in require_version must be str, but received %s." % (type(min_version)) ) if not isinstance(max_version, (str, type(None))): raise TypeError( "The type of 'max_version' in require_version must be str or type(None), but received %s." % (type(max_version)) ) check_format = re.match(r'\d+(\.\d+){0,3}', min_version) if check_format is None or check_format.group() != min_version: raise ValueError( "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', " "like '1.5.2.0', but received %s" % min_version ) if max_version is not None: check_format = re.match(r'\d+(\.\d+){0,3}', max_version) if check_format is None or check_format.group() != max_version: raise ValueError( "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', " "like '1.5.2.0', but received %s" % max_version ) version_installed = [ fluid_version.major, fluid_version.minor, fluid_version.patch, fluid_version.rc, ] zero_version = ['0', '0', '0', '0'] def version_cmp(ver_a, ver_b): for i in range(len(ver_a)): if int(ver_a[i]) > int(ver_b[i]): return 1 elif int(ver_a[i]) < int(ver_b[i]): return -1 return 0 if version_cmp(version_installed, zero_version) == 0: if max_version is not None: warnings.warn( "PaddlePaddle version in [%s, %s] required, but %s installed. " "Maybe you are using a develop version, " "please make sure the version is good with your code." % (min_version, max_version, fluid_version.full_version) ) else: warnings.warn( "PaddlePaddle version %s or higher is required, but %s installed, " "Maybe you are using a develop version, " "please make sure the version is good with your code." % (min_version, fluid_version.full_version) ) return min_version_split = min_version.split('.') min_version_to_check = ( min_version_split + zero_version[len(min_version_split) :] ) if max_version is not None: max_version_split = max_version.split('.') max_version_to_check = ( max_version_split + zero_version[len(max_version_split) :] ) if ( version_cmp(version_installed, max_version_to_check) > 0 or version_cmp(version_installed, min_version_to_check) < 0 ): raise Exception( "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed." % (min_version, max_version, fluid_version.full_version) ) else: if version_cmp(version_installed, min_version_to_check) < 0: raise Exception( "VersionError: PaddlePaddle version %s or higher is required, but %s installed, " "please upgrade your PaddlePaddle to %s or other higher version." % (min_version, fluid_version.full_version, min_version) ) def _dygraph_not_support_(func): def __impl__(*args, **kwargs): assert not _non_static_mode(), ( "We don't support %s in dynamic graph mode" % func.__name__ ) return func(*args, **kwargs) return __impl__ def _dygraph_only_(func): def __impl__(*args, **kwargs): assert _non_static_mode(), ( "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__ ) return func(*args, **kwargs) return __impl__ def _non_static_only_(func): def __impl__(*args, **kwargs): from .dygraph.base import in_declarative_mode assert _non_static_mode() or in_declarative_mode(), ( "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__ ) return func(*args, **kwargs) return __impl__ def _static_only_(func): def __impl__(*args, **kwargs): assert not _non_static_mode(), ( "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__ ) return func(*args, **kwargs) return __impl__ def _set_pipeline_stage(stage): global _current_pipeline_stage _current_pipeline_stage = stage # NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only # used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our # official docments, logically, we want to keep VarBase and logically consistent. While, actually, # in our implementation, there some APIs not supported, like numpy, because Variable contains the desc. # So, those APIs are listed under class Variable to generate docs only. # TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting # same base class. def _fake_interface_only_(func): def __impl__(*args, **kwargs): raise AssertionError( "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n" " 1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n" " 2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. " "If you have to translate dynamic graph to static graph, please use other API to replace '%s'." % (func.__name__, func.__name__) ) return __impl__ # NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) # in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without # introducing compatibility issues, add this decorator # NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will # move kwargs to args, which doesn't work in this decorate case def deprecate_stat_dict(func): @functools.wraps(func) def wrapper(*args, **kwargs): if 'stat_dict' in kwargs: warnings.warn( "The argument `stat_dict` has deprecated, please change it to `state_dict`.", DeprecationWarning, ) kwargs['state_dict'] = kwargs['stat_dict'] kwargs.pop('stat_dict') return func(*args, **kwargs) return wrapper dygraph_not_support = wrap_decorator(_dygraph_not_support_) dygraph_only = wrap_decorator(_dygraph_only_) static_only = wrap_decorator(_static_only_) fake_interface_only = wrap_decorator(_fake_interface_only_) non_static_only = wrap_decorator(_non_static_only_) def _dygraph_tracer(): return global_var._dygraph_tracer_ def _global_flags(): return _global_flags_ def _current_expected_place(): global _global_expected_place_ if _global_expected_place_ is None: if core.is_compiled_with_cuda(): try: device_count = core.get_cuda_device_count() except Exception as e: device_count = 0 if device_count > 0: _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0]) else: warnings.warn( "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default." ) _global_expected_place_ = core.CPUPlace() elif core.is_compiled_with_xpu(): try: device_count = core.get_xpu_device_count() except Exception as e: device_count = 0 if device_count > 0: _global_expected_place_ = core.XPUPlace(_xpu_ids()[0]) else: warnings.warn( "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default." ) _global_expected_place_ = core.CPUPlace() elif core.is_compiled_with_mlu(): try: device_count = core.get_mlu_device_count() except Exception as e: device_count = 0 if device_count > 0: _global_expected_place_ = core.MLUPlace(_mlu_ids()[0]) else: warnings.warn( "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default." ) _global_expected_place_ = core.CPUPlace() elif core.is_compiled_with_custom_device("npu"): # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1. try: device_count = core.get_custom_device_count("npu") except Exception as e: device_count = 0 if device_count > 0: _global_expected_place_ = core.CustomPlace( "npu", _custom_device_ids("npu")[0] ) else: warnings.warn( "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default." ) _global_expected_place_ = core.CPUPlace() else: _global_expected_place_ = core.CPUPlace() return _global_expected_place_ def _set_dygraph_tracer_expected_place(place): if global_var._dygraph_tracer_ is not None: global_var._dygraph_tracer_._expected_place = place def _set_expected_place(place): global _global_expected_place_ _global_expected_place_ = place _set_dygraph_tracer_expected_place(place) # TODO(zhiqiu): remove this function. def _var_base_to_np(var_base): """ convert VarBase tp numpy Args: var_base(VarBase) : the VarBase to convert Returns (np.ndarray): the np.ndarray contain the value of VarBase """ warnings.warn( "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)." ) return var_base.numpy() def _cpu_num(): if "CPU_NUM" not in os.environ.keys(): if multiprocessing.cpu_count() > 1: sys.stderr.write( '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n' 'CPU_NUM indicates that how many CPUPlace are used in the current task.\n' 'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n' 'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n' '!!! The default number of CPU_NUM=1.\n'.format( multiprocessing.cpu_count(), multiprocessing.cpu_count() ) ) os.environ['CPU_NUM'] = str(1) cpu_num = os.environ.get('CPU_NUM') return int(cpu_num) def _cuda_ids(): gpus_env = os.getenv("FLAGS_selected_gpus") if gpus_env: device_ids = [int(s) for s in gpus_env.split(",")] else: device_ids = range(core.get_cuda_device_count()) return device_ids def _xpu_ids(): xpus_env = os.getenv("FLAGS_selected_xpus") if xpus_env: device_ids = [int(s) for s in xpus_env.split(",")] else: device_ids = range(core.get_xpu_device_count()) return device_ids def _npu_ids(): npus_env = os.getenv("FLAGS_selected_npus") if npus_env: device_ids = [int(s) for s in npus_env.split(",")] else: device_ids = range(core.get_npu_device_count()) return device_ids def _custom_device_ids(device_type): custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s") if custom_devices_env: device_ids = [int(s) for s in custom_devices_env.split(",")] else: device_ids = range(core.get_custom_device_count(device_type)) return device_ids def _mlu_ids(): mlus_env = os.getenv("FLAGS_selected_mlus") if mlus_env: device_ids = [int(s) for s in mlus_env.split(",")] else: device_ids = range(core.get_mlu_device_count()) return device_ids def is_compiled_with_xpu(): """ Whether this whl package can be used to run the model on XPU. Returns (bool): support xpu or not. Examples: .. code-block:: python import paddle.fluid as fluid support_xpu = fluid.is_compiled_with_xpu() """ return core.is_compiled_with_xpu() def is_compiled_with_npu(): """ Whether this whl package can be used to run the model on NPU. Returns (bool): support npu or not. Examples: .. code-block:: python import paddle.fluid as fluid support_npu = fluid.is_compiled_with_npu() """ return core.is_compiled_with_npu() def disable_signal_handler(): """ Reset signal handler registered by Paddle. Paddle installs signal handlers at C++ level to log debug information upon failing. However, conflicts can happen if another python module is making use of such signal. Such being the case, one may disblae paddle signal handler via this interface. Known frameworks that require disabling signal handler includes: 1. TVM 2. ADLIK Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks. Returns: None Examples: .. code-block:: python import paddle paddle.disable_signal_handler() """ core.disable_signal_handler() def is_compiled_with_cinn(): """ Whether this whl package can be used to run the model on CINN. Returns (bool): `True` if CINN is currently available, otherwise `False`. Examples: .. code-block:: python import paddle support_cinn = paddle.device.is_compiled_with_cinn() """ return core.is_compiled_with_cinn() def is_compiled_with_cuda(): """ Whether this whl package can be used to run the model on GPU. Returns (bool): `True` if CUDA is currently available, otherwise `False`. Examples: .. code-block:: python import paddle support_gpu = paddle.device.is_compiled_with_cuda() """ return core.is_compiled_with_cuda() def is_compiled_with_rocm(): """ Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm). Returns (bool): `True` if ROCm is currently available, otherwise `False`. Examples: .. code-block:: python import paddle support_gpu = paddle.device.is_compiled_with_rocm() """ return core.is_compiled_with_rocm() def cuda_places(device_ids=None): """ Note: For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device. The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable. This function creates a list of :code:`paddle.CUDAPlace` objects. If :code:`device_ids` is None, environment variable of :code:`FLAGS_selected_gpus` would be checked first. For example, if :code:`FLAGS_selected_gpus=0,1,2`, the returned list would be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)]. If :code:`FLAGS_selected_gpus` is not set, all visible gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable. If :code:`device_ids` is not None, it should be the device ids of GPUs. For example, if :code:`device_ids=[0,1,2]`, the returned list would be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)]. Parameters: device_ids (list|tuple, optional): A list/tuple of int of GPU device ids. Returns: list of paddle.CUDAPlace: Created GPU place list. Examples: .. code-block:: python import paddle import paddle.static as static # required: gpu paddle.enable_static() cuda_places = static.cuda_places() """ assert core.is_compiled_with_cuda(), "Not compiled with CUDA" if device_ids is None: device_ids = _cuda_ids() elif not isinstance(device_ids, (list, tuple)): device_ids = [device_ids] return [core.CUDAPlace(dev_id) for dev_id in device_ids] def xpu_places(device_ids=None): """ **Note**: For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device. This function creates a list of :code:`paddle.XPUPlace` objects. If :code:`device_ids` is None, environment variable of :code:`FLAGS_selected_xpus` would be checked first. For example, if :code:`FLAGS_selected_xpus=0,1,2`, the returned list would be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)]. If :code:`FLAGS_selected_xpus` is not set, all visible xpu places would be returned. If :code:`device_ids` is not None, it should be the device ids of XPUs. For example, if :code:`device_ids=[0,1,2]`, the returned list would be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)]. Parameters: device_ids (list or tuple of int, optional): list of XPU device ids. Returns: list of paddle.XPUPlace: Created XPU place list. Examples: .. code-block:: python # required: xpu import paddle import paddle.static as static paddle.enable_static() xpu_places = static.xpu_places() """ assert core.is_compiled_with_xpu(), "Not compiled with XPU" if device_ids is None: device_ids = _xpu_ids() elif not isinstance(device_ids, (list, tuple)): device_ids = [device_ids] return [core.XPUPlace(dev_id) for dev_id in device_ids] def npu_places(device_ids=None): """ Note: For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device. This function creates a list of :code:`paddle.NPUPlace` objects. If :code:`device_ids` is None, environment variable of :code:`FLAGS_selected_npus` would be checked first. For example, if :code:`FLAGS_selected_npus=0,1,2`, the returned list would be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)]. If :code:`FLAGS_selected_npus` is not set, all visible npu places would be returned. If :code:`device_ids` is not None, it should be the device ids of NPUs. For example, if :code:`device_ids=[0,1,2]`, the returned list would be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)]. Parameters: device_ids (list or tuple of int, optional): list of NPU device ids. Returns: list of paddle.NPUPlace: Created NPU place list. Examples: .. code-block:: python # required: npu import paddle import paddle.static as static paddle.enable_static() npu_places = static.npu_places() """ assert core.is_compiled_with_npu(), "Not compiled with NPU" if device_ids is None: device_ids = _npu_ids() elif not isinstance(device_ids, (list, tuple)): device_ids = [device_ids] return [core.NPUPlace(dev_id) for dev_id in device_ids] def cpu_places(device_count=None): """ This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list. If :code:`device_count` is None, the device count would be determined by environment variable :code:`CPU_NUM`. If :code:`CPU_NUM` is not set, the default value is 1, i.e. CPU_NUM=1. :code:`CPU_NUM` indicates the number of devices used in the current task. The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores. Parameters: device_count (int, optional): device number. Default: None. Returns: list of paddle.CPUPlace: Created list of CPU places. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() cpu_places = static.cpu_places() """ if device_count is None: device_count = _cpu_num() return [core.CPUPlace()] * device_count def cuda_pinned_places(device_count=None): """ This function creates a list of :code:`fluid.CUDAPinnedPlace` objects. If :code:`device_count` is None, the device count would be determined by environment variable :code:`CPU_NUM`. If :code:`CPU_NUM` is not set, the default value is 1, i.e. CPU_NUM=1. :code:`CPU_NUM` indicates the number of devices used in the current task. The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores. Parameters: device_count (int, optional): device number. Default: None. Returns: list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places. Examples: .. code-block:: python import paddle.fluid as fluid cuda_pinned_places_cpu_num = fluid.cuda_pinned_places() # or cuda_pinned_places = fluid.cuda_pinned_places(1) """ assert core.is_compiled_with_cuda(), "Not compiled with CUDA" if device_count is None: device_count = len(_cuda_ids()) return [core.CUDAPinnedPlace()] * device_count def mlu_places(device_ids=None): """ This function creates a list of :code:`paddle.device.MLUPlace` objects. If :code:`device_ids` is None, environment variable of :code:`FLAGS_selected_mlus` would be checked first. For example, if :code:`FLAGS_selected_mlus=0,1,2`, the returned list would be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)]. If :code:`FLAGS_selected_mlus` is not set, all visible mlu places would be returned. If :code:`device_ids` is not None, it should be the device ids of MLUs. For example, if :code:`device_ids=[0,1,2]`, the returned list would be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)]. Note: For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device. Parameters: device_ids (list or tuple of int, optional): list of MLU device ids. Returns: list of paddle.device.MLUPlace: Created MLU place list. Examples: .. code-block:: python # required: mlu import paddle import paddle.static as static paddle.enable_static() mlu_places = static.mlu_places() """ assert core.is_compiled_with_mlu(), "Not compiled with MLU" if device_ids is None: device_ids = _mlu_ids() elif not isinstance(device_ids, (list, tuple)): device_ids = [device_ids] return [core.MLUPlace(dev_id) for dev_id in device_ids] class NameScope: def __init__(self, name="", parent=None): self._children = dict() self._name = name self._parent = parent def child(self, prefix): if prefix not in self._children: new_child = NameScope(prefix, self) self._children[prefix] = [new_child] else: new_child = NameScope( prefix + "_%d" % len(self._children[prefix]), self ) self._children[prefix].append(new_child) return new_child def parent(self): return self._parent def name(self): return self._name _name_scope = NameScope() @signature_safe_contextmanager def name_scope(prefix=None): """ Generate hierarchical name prefix for the operators in Static Graph. Note: This should only used for debugging and visualization purpose. Don't use it for serious analysis such as graph/program transformations. Don't use it in dygraph, since it will cause memory leak. Args: prefix(str, optional): prefix. Default is none. Examples: .. code-block:: python import paddle paddle.enable_static() with paddle.static.name_scope("s1"): a = paddle.static.data(name='data', shape=[None, 1], dtype='int32') b = a + 1 with paddle.static.name_scope("s2"): c = b * 1 with paddle.static.name_scope("s3"): d = c / 1 with paddle.static.name_scope("s1"): f = paddle.tensor.pow(d, 2.0) with paddle.static.name_scope("s4"): g = f - 1 # Op are created in the default main program. for op in paddle.static.default_main_program().block(0).ops: # elementwise_add is created in /s1/ if op.type == 'elementwise_add': assert op.desc.attr("op_namescope") == '/s1/' # elementwise_mul is created in '/s1/s2' elif op.type == 'elementwise_mul': assert op.desc.attr("op_namescope") == '/s1/s2/' # elementwise_div is created in '/s1/s3' elif op.type == 'elementwise_div': assert op.desc.attr("op_namescope") == '/s1/s3/' # elementwise_sum is created in '/s4' elif op.type == 'elementwise_sub': assert op.desc.attr("op_namescope") == '/s4/' # pow is created in /s1_1/ elif op.type == 'pow': assert op.desc.attr("op_namescope") == '/s1_1/' """ # TODO(panyx0718): Only [0-9a-z]. # in dygraph we don't need namescope since it will cause mem leak if _non_static_mode(): yield else: assert prefix, "namescope prefix can not be empty." global _name_scope _name_scope = _name_scope.child(prefix) try: yield finally: _name_scope = _name_scope.parent() def _full_name_scope(): global _name_scope scope = _name_scope name = "" while scope: name = scope.name() + "/" + name scope = scope.parent() return name def generate_control_dev_var_name(): import random return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random()) def grad_var_name(var_name): """ Returns: str: gradient name for a certain var name """ return var_name + GRAD_VAR_SUFFIX def convert_np_dtype_to_dtype_(np_dtype): """ Convert the data type in numpy to the data type in Paddle. Args: np_dtype (np.dtype|str): The data type in numpy or valid data type string. Returns: core.VarDesc.VarType: The data type in Paddle. """ # Convert the data type string to numpy data type. if isinstance(np_dtype, str) and np_dtype == "bfloat16": dtype = np.uint16 else: dtype = np.dtype(np_dtype) if dtype == np.float32: return core.VarDesc.VarType.FP32 elif dtype == np.float64: return core.VarDesc.VarType.FP64 elif dtype == np.float16: return core.VarDesc.VarType.FP16 elif dtype == np.int32: return core.VarDesc.VarType.INT32 elif dtype == np.int16: return core.VarDesc.VarType.INT16 elif dtype == np.int64: return core.VarDesc.VarType.INT64 elif dtype == np.bool_: return core.VarDesc.VarType.BOOL elif dtype == np.uint16: # since there is still no support for bfloat16 in NumPy, # uint16 is used for casting bfloat16 return core.VarDesc.VarType.BF16 elif dtype == np.uint8: return core.VarDesc.VarType.UINT8 elif dtype == np.int8: return core.VarDesc.VarType.INT8 elif dtype == np.complex64: return core.VarDesc.VarType.COMPLEX64 elif dtype == np.complex128: return core.VarDesc.VarType.COMPLEX128 else: raise ValueError("Not supported numpy dtype %s" % dtype) def dtype_is_floating(dtype): """ Check the data type is floating or not. Args: dtype(np.dtype|core.VarDesc.VarType): data type. Could be numpy format or Paddle format Returns(bool): True if data type is a float value """ if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) return dtype in [ core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64, ] def _debug_string_(proto, throw_on_error=True): """ Get the debug string of a protobuf message. The message could be not initialized. Args: proto(google.protobuf.message.Message): The protobuf message throw_on_error(bool): True if raise an error when the protobuf message is not initialized. Returns(str): The debug string of the protobuf message """ error_fields = list() if not proto.IsInitialized(error_fields) and throw_on_error: raise ValueError( "{0} are not initialized.\nThe message is {1}:\n".format( error_fields, proto ) ) return proto.__str__() def _varbase_creator( type=core.VarDesc.VarType.LOD_TENSOR, name=None, shape=None, dtype=None, persistable=None, **kwargs, ): if dtype is not None: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if global_var._in_eager_mode_: eager_tensor = core.eager.Tensor( dtype if dtype else core.VarDesc.VarType.FP32, list(shape) if shape else [], name, type if type else core.VarDesc.VarType.LOD_TENSOR, True if persistable else False, ) eager_tensor.retain_grads() return eager_tensor else: return core.VarBase( dtype if dtype else core.VarDesc.VarType.FP32, list(shape) if shape else [], name, type if type else core.VarDesc.VarType.LOD_TENSOR, True if persistable else False, ) def _all_is_type(vals, expected_type): """ Return True if type of each element is expected_type. NOTE: BuiltIn all() will always return True if vals is empty. """ assert isinstance(vals, (list, tuple)) if not vals: return False return all(isinstance(v, expected_type) for v in vals) class VariableMetaClass(type): @classmethod def __instancecheck__(cls, instance): t = type(instance) if in_dygraph_mode(): return issubclass(t, core.eager.Tensor) else: return issubclass(t, Variable) class ParameterMetaClass(VariableMetaClass): @classmethod def __instancecheck__(cls, instance): t = type(instance) if in_dygraph_mode(): return issubclass(t, EagerParamBase) else: return issubclass(t, Parameter) class Variable(metaclass=VariableMetaClass): """ Notes: The constructor of Variable should not be invoked directly. In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed. In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data. In Fluid, every input and output of an OP is a variable. In most cases, variables are used for holding different kinds of data or training labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and two variables in different :ref:`api_guide_Block_en` could have the same name. There are many kinds of variables. Each kind of them has its own attributes and usages. Please refer to the `framework.proto `_ for details. Most of a Variable's member variables can be set to be None. It mean it is not available or will be specified later. Examples: In Static Graph Mode: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') In Dygraph Mode: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): new_variable = fluid.dygraph.to_variable(np.arange(10)) """ def __init__( self, block, type=core.VarDesc.VarType.LOD_TENSOR, name=None, shape=None, dtype=None, lod_level=None, capacity=None, persistable=None, error_clip=None, stop_gradient=False, is_data=False, need_check_feed=False, belong_to_optimizer=False, **kwargs, ): self.block = block if name is None: name = unique_name.generate('_generated_var') if dtype is not None: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if dtype == core.VarDesc.VarType.STRINGS: type = core.VarDesc.VarType.STRINGS lod_level = None if type == core.VarDesc.VarType.SPARSE_COO: lod_level = None self.belong_to_optimizer = belong_to_optimizer self.error_clip = error_clip is_new_var = False self.desc = self.block.desc.find_var(name.encode()) if self.desc is None: self.desc = self.block.desc.var(name.encode()) is_new_var = True if is_new_var: self.desc.set_type(type) elif self.desc.type() != type: raise ValueError( "Variable '{0}' has been created before. The " "previous type is {1}, the new type is {2}. They" " are not matched".format(self.name, self.desc.type(), type) ) if shape is not None: if is_new_var: self.desc.set_shape(shape) else: old_shape = self.shape shape = tuple(shape) if shape != old_shape: raise ValueError( "Variable '{0}' has been created before. The previous " "shape is {1}, the new shape is {2}. They are not " "matched.".format(self.name, old_shape, shape) ) if dtype is not None: if is_new_var: self.desc.set_dtype(dtype) else: old_dtype = self.dtype if dtype != old_dtype: raise ValueError( "Variable '{0}' has been created before. " "The previous data type is {1}, the new " "data type is {2}. They are not " "matched.".format(self.name, old_dtype, dtype) ) if lod_level is not None: if is_new_var: self.desc.set_lod_level(lod_level) else: if lod_level != self.lod_level: raise ValueError( "Variable '{0}' has been created before. " "The previous lod_level is {1}, the new " "lod_level is {2}. They are not " "matched".format(self.name, self.lod_level, lod_level) ) if persistable is not None: if is_new_var: self.desc.set_persistable(persistable) else: if persistable != self.persistable: raise ValueError( "Variable '{0}' has been created before." "The previous persistable is {1}, the new " "persistable is {2}. They are not matched".format( self.name, self.persistable, persistable ) ) if need_check_feed and is_new_var: self.desc.set_need_check_feed(need_check_feed) if capacity is not None: if is_new_var: self.desc.set_capacity(capacity) else: # TODO(abhinavarora) : Compare with set capacity once, # get_capacity is implemented pass self.block.vars[name] = self self.op = None self.stop_gradient = stop_gradient self.is_data = is_data def detach(self): """ Returns a new Variable, detached from the current graph. It will share data with origin Variable and without tensor copy. In addition, the detached Variable doesn't provide gradient propagation. Returns: ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable. Examples: .. code-block:: python import paddle paddle.enable_static() # create a static Variable x = paddle.static.data(name='x', shape=[3, 2, 1]) # create a detached Variable y = x.detach() """ assert ( self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached" output = self.block.create_var( name=unique_name.generate_with_ignorable_key("detach_" + self.name), dtype=self.dtype, type=self.type, persistable=self.persistable, stop_gradient=True, ) self.block.append_op( type='share_data', inputs={'X': [self]}, outputs={'Out': [output]} ) return output @fake_interface_only def numpy(self): """ **Notes**: **This API is ONLY available in Dygraph mode** Returns a numpy array shows the value of current :ref:`api_guide_Variable_en` Returns: ndarray: The numpy value of current Variable. Returns type: ndarray: dtype is same as current Variable Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import Linear import numpy as np data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') with fluid.dygraph.guard(): linear = Linear(32, 64) data = to_variable(data) x = linear(data) print(x.numpy()) """ pass @fake_interface_only def backward(self, retain_graph=False): """ **Notes**: **This API is ONLY available in Dygraph mode** Run backward of current Graph which starts from current Tensor. Args: retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient. Defaults to False. Returns: NoneType: None Examples: .. code-block:: python import numpy as np import paddle paddle.disable_static() x = np.ones([2, 2], np.float32) inputs = [] for _ in range(10): tmp = paddle.to_tensor(x) # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since # there is no one need gradient on it. tmp.stop_gradient=False inputs.append(tmp) ret = paddle.add_n(inputs) loss = paddle.sum(ret) loss.backward() """ pass @fake_interface_only def gradient(self): """ **Notes**: **This API is ONLY available in Dygraph mode** Get the Gradient of Current Variable Returns: ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np # example1: return ndarray x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient=False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = paddle.sum(ret2) loss2.backward() print(loss2.gradient()) # example2: return tuple of ndarray with fluid.dygraph.guard(): embedding = paddle.nn.Embedding( 20, 32, weight_attr='emb.w', sparse=True) x_data = np.arange(12).reshape(4, 3).astype('int64') x_data = x_data.reshape((-1, 3, 1)) x = fluid.dygraph.base.to_variable(x_data) out = embedding(x) out.backward() print(embedding.weight.gradient()) """ pass @fake_interface_only def clear_gradient(self): """ **Notes**: **1. This API is ONLY available in Dygraph mode** **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC** Clear (set to ``0`` ) the Gradient of Current Variable Returns: None Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient=False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = paddle.sum(ret2) loss2.backward() print(loss2.gradient()) loss2.clear_gradient() print("After clear {}".format(loss2.gradient())) """ pass @fake_interface_only def register_hook(self, hook): pass def __str__(self): return self._to_readable_code() def _to_readable_code(self): """ Get readable debug string of Variable. .. note:: If you want to get the debug string in protobuf format, please use :code:`to_string` method. Returns: string: The formatted Variable string. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() cur_program = static.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print(new_variable._to_readable_code()) """ # VarType.LOD_TENSOR -> LOD_TENSOR type_str = str(self.type).split('.')[1] if ( self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR ): dtype_str = str(self.dtype).split('.')[1] var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format( name=self.name, type=type_str, shape=self.shape, dtype=dtype_str, stop_gradient=self.stop_gradient, ) else: var_str = "{name} : {type})".format(name=self.name, type=type_str) if self.is_parameter: if self.trainable: var_str = "trainable param " + var_str else: var_str = "param " + var_str else: var_str = "var " + var_str if self.persistable: var_str = "persist " + var_str from paddle.distributed.auto_parallel.dist_context import ( get_default_distributed_context, ) dist_context = get_default_distributed_context() dist_tensor = dist_context.get_dist_tensor_for_program(self) if dist_tensor is not None: var_str += ", {name} = {value}".format( name="dist_attr", value=dist_tensor ) return var_str def to_string(self, throw_on_error, with_details=False): """ Get debug string. Args: throw_on_error (bool): True if raise an exception when self is not initialized. with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False; Returns: str: The debug string. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print(new_variable.to_string(True)) print("=============with detail===============") print(new_variable.to_string(True, True)) """ assert isinstance(throw_on_error, bool) and isinstance( with_details, bool ) protostr = self.desc.serialize_to_string() proto = framework_pb2.VarDesc.FromString(bytes(protostr)) res_str = _debug_string_(proto, throw_on_error) if with_details: additional_attr = ("error_clip",) for attr_name in additional_attr: res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name)) return res_str __repr__ = __str__ def element_size(self): """ Returns the size in bytes of an element in the Tensor. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool') x.element_size() # 1 x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16') x.element_size() # 2 x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16') x.element_size() # 2 x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32') x.element_size() # 4 x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64') x.element_size() # 8 """ return self.desc.element_size() @property def stop_gradient(self): """ Indicating if we stop gradient from current Variable **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False`` Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): value0 = np.arange(26).reshape(2, 13).astype("float32") value1 = np.arange(6).reshape(2, 3).astype("float32") value2 = np.arange(10).reshape(2, 5).astype("float32") linear = fluid.Linear(13, 5, dtype="float32") linear2 = fluid.Linear(3, 3, dtype="float32") a = fluid.dygraph.to_variable(value0) b = fluid.dygraph.to_variable(value1) c = fluid.dygraph.to_variable(value2) out1 = linear(a) out2 = linear2(b) out1.stop_gradient = True out = fluid.layers.concat(input=[out1, out2, c], axis=1) out.backward() assert linear.weight.gradient() is None assert (out1.gradient() == 0).all() """ return self.desc.stop_gradient() @stop_gradient.setter def stop_gradient(self, s): self.desc.set_stop_gradient(s) @property def persistable(self): """ Indicating if we current Variable should be long-term alive **Notes: This Property will be deprecated and this API is just to help user understand concept** **1. All Variable's persistable is** ``False`` **except Parameters.** **2. In** Dygraph **mode, this property should not be changed** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("persistable of current Var is: {}".format(new_variable.persistable)) """ return self.desc.persistable() @persistable.setter def persistable(self, p): self.desc.set_persistable(p) @property def is_parameter(self): """ Indicating if current Variable is a Parameter Examples: .. code-block:: python import paddle new_parameter = paddle.static.create_parameter(name="X", shape=[10, 23, 48], dtype='float32') if new_parameter.is_parameter: print("Current var is a Parameter") else: print("Current var is not a Parameter") # Current var is a Parameter """ return self.desc.is_parameter() @is_parameter.setter def is_parameter(self, p): self.desc.set_is_parameter(p) @property def name(self): """ Indicating name of current Variable **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("name of current Var is: {}".format(new_variable.name)) """ return self.desc.name() @property def grad_name(self): """ Indicating name of the gradient Variable of current Variable. **Notes: This is a read-only property. It simply returns name of gradient Variable from a naming convention but doesn't guarantee the gradient exists.** Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32') print(x.grad_name) # output is ``x@GRAD`` """ return self.name + "@GRAD" @name.setter def name(self, new_name): self.desc.set_name(new_name) @property def shape(self): """ Indicating shape of current Variable **Notes: This is a read-only property** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("shape of current Var is: {}".format(new_variable.shape)) """ # convert to tuple, make it as same as numpy API. return tuple(self.desc.shape()) @property def dtype(self): """ Indicating data type of current Variable **Notes: This is a read-only property** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("Dtype of current Var is: {}".format(new_variable.dtype)) """ return self.desc.dtype() @property def lod_level(self): """ Indicating ``LoD`` info of current Variable, please refer to :ref:`api_fluid_LoDTensor_en` to check the meaning of ``LoD`` **Notes**: **1. This is a read-only property** **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)`` Examples: .. code-block:: python import paddle import paddle.fluid as fluid paddle.enable_static() cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("LoD Level of current Var is: {}".format(new_variable.lod_level)) """ if self.type == core.VarDesc.VarType.SELECTED_ROWS: raise Exception("SelectedRows DO NOT supprt lod") if self.type == core.VarDesc.VarType.STRINGS: return None return self.desc.lod_level() @property def type(self): """ Indicating Type of current Variable **Notes: This is a read-only property** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("Type of current Var is: {}".format(new_variable.type)) """ return self.desc.type() @property def T(self): """ Permute current Variable with its dimensions reversed. If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.ones(shape=[2, 3, 5]) x_T = x.T exe = paddle.static.Executor() x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0] print(x_T_np.shape) # (5, 3, 2) """ if len(self.shape) == 1: return self perm = [] for i in range(len(self.shape)): perm.insert(0, i) out = self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name + '.tmp'), dtype=self.dtype, type=self.type, persistable=False, stop_gradient=False, ) input_shape = self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name + '.tmp'), dtype=self.dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=False, ) self.block.append_op( type='transpose2', inputs={'X': [self]}, outputs={'Out': [out], 'XShape': [input_shape]}, attrs={'axis': perm}, ) return out def clone(self): """ Returns a new static Variable, which is the clone of the original static Variable. It remains in the current graph, that is, the cloned Variable provides gradient propagation. Calling ``out = tensor.clone()`` is same as ``out = assign(tensor)`` . Returns: Variable, The cloned Variable. Examples: .. code-block:: python import paddle paddle.enable_static() # create a static Variable x = paddle.static.data(name='x', shape=[3, 2, 1]) # create a cloned Variable y = x.clone() """ output = self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name + "_clone"), dtype=self.dtype, type=self.type, persistable=self.persistable, stop_gradient=self.stop_gradient, ) self.block.append_op( type='assign', inputs={'X': [self]}, outputs={'Out': [output]} ) return output def _set_error_clip(self, error_clip): """ Set the error_clip. Args: error_clip(BaseErrorClipAttr) : The new error_clip. Returns: None """ self.error_clip = error_clip def _set_info(self, key, value): """ Set key-value information for this variable. Args: key(str): Key for this information. value(object): The value associated to the key. Returns: None """ if not hasattr(self, "_info"): self._info = {} self._info[key] = value def _get_info(self, key): """ Get the information of this variable corresponding to key. Args: key(str): Key for this information. Returns: object """ if hasattr(self, "_info") and key in self._info: return self._info[key] return None def _slice_indices(self, slice, length): """ Reference implementation for the slice.indices method. """ # Compute step and length as integers. step = 1 if slice.step is None else slice.step # Raise ValueError for negative length or zero step. if length < 0: raise ValueError("length should not be negative") if step == 0: raise ValueError("slice step can not be zero") # Find lower and upper bounds for start and stop. lower = -1 if step < 0 else 0 upper = length - 1 if step < 0 else length # Compute start. if slice.start is None: start = upper if step < 0 else lower else: start = slice.start start = ( max(start + length, lower) if start < 0 else min(start, upper) ) # Compute stop. if slice.stop is None: stop = lower if step < 0 else upper else: stop = slice.stop stop = max(stop + length, lower) if stop < 0 else min(stop, upper) return start, stop, step def _detectEllipsis(self, item): has_ellipsis = False start = 0 end = len(self.shape) for index, o in enumerate(item): if o is Ellipsis: if has_ellipsis: raise ValueError("Index can have one ellipsis only.") has_ellipsis = True start = index else: if has_ellipsis: end = index return has_ellipsis, start, end def _reconstructSliceinfo(self, item): has_ellipsis, start, end = self._detectEllipsis(item) if has_ellipsis: newitem = [] for i in range(start): newitem.append(item[i]) for i in range(start, end): newitem.append(slice(None, None, None)) for i in range(end, len(item)): newitem.append(item[i]) return newitem else: return None def _detectContinuesSlice(self, item): starts = [] ends = [] for index, o in enumerate(item): if isinstance(o, int): start = int(o) if (index > 0 and index >= self.shape[index]) or ( index < 0 and (index + self.shape[index]) < 0 ): raise IndexError("invalid index") start = ( max(start + self.shape[index], 0) if start < 0 else min(start, self.shape[index]) ) starts.append(start) ends.append(start + 1) elif isinstance(o, slice): start, stop, step = self._slice_indices(o, self.shape[index]) if step == 1 or step == -1: starts.append(start) ends.append(stop) else: return False, None else: raise IndexError("Valid index accept int or slice or ellipsis") return True, [starts, ends] def _cloneVar(self, copy=False): if not copy: return self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name), dtype=self.dtype, ) else: return self def _sliceVar(self, axes, starts, ends): new_var = self._cloneVar() self.block.append_op( type="slice", inputs={'Input': [self]}, outputs={'Out': [new_var]}, attrs={'axes': axes, 'starts': starts, 'ends': ends}, ) return new_var def _concatVar(self, inputs, axis): new_var = self._cloneVar() self.block.append_op( type="concat", inputs={'X': inputs}, outputs={'Out': [new_var]}, attrs={ 'axis': axis, }, ) return new_var def _sliceAndConcatVar(self, item, axis): if isinstance(item, slice): if self.shape[axis] < 0: return self._cloneVar(True) start, stop, step = self._slice_indices(item, self.shape[axis]) if step == 1: return self._sliceVar([axis], [start], [stop]) else: vars = [] if step > 0: while start < stop: vars.append( self._sliceVar([axis], [start], [start + 1]) ) start += step else: while start > stop: vars.append( self._sliceVar([axis], [start], [start + 1]) ) start += step return self._concatVar(vars, axis) elif isinstance(item, int): if self.shape[axis] < 0: return self._cloneVar(True) index = int(item) if (index > 0 and index >= self.shape[axis]) or ( index < 0 and (index + self.shape[axis]) < 0 ): raise IndexError("invalid index") return self._sliceVar([axis], [index], [index + 1]) else: raise IndexError("Valid index accept int or slice or tuple") def __getitem__(self, item): return _getitem_impl_(self, item) def __setitem__(self, item, value): return _setitem_impl_(self, item, value) def get_value(self, scope=None): """ Get the value of variable in given scope. Args: scope(Scope, optional) : If `scope` is None, it will be set to global scope obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`. Default: None Returns: Tensor, the value in given scope. Examples: .. code-block:: python import paddle import paddle.static as static import numpy as np paddle.enable_static() x = static.data(name="x", shape=[10, 10], dtype='float32') y = static.nn.fc(x, 10, name='fc') place = paddle.CPUPlace() exe = static.Executor(place) prog = paddle.static.default_main_program() exe.run(static.default_startup_program()) inputs = np.ones((10, 10), dtype='float32') exe.run(prog, feed={'x': inputs}, fetch_list=[y, ]) path = 'temp/tensor_' for var in prog.list_vars(): if var.persistable: t = var.get_value() paddle.save(t, path+var.name+'.pdtensor') for var in prog.list_vars(): if var.persistable: t_load = paddle.load(path+var.name+'.pdtensor') var.set_value(t_load) """ # The 'framework' is a low-level module, and 'executor' # can not be imported at the begainning of this file. # Therefore, the above two modules are dynamically imported. from .executor import global_scope if scope is not None and not isinstance(scope, core._Scope): raise TypeError( "`scope` should be None or `paddle.static.Scope` type, but received {}.".format( type(scope) ) ) if scope is None: scope = global_scope() var_temp = scope.find_var(self.name) if var_temp is None: raise ValueError( "Can not find Variable '{}' in the Scope.".format(self.name) ) t = var_temp.get_tensor() return t def set_value(self, value, scope=None): ''' Set the value to the tensor in given scope. Args: value(Tensor/ndarray) : The value to be set. scope(Scope, optional) : If `scope` is None, it will be set to global scope obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`. Default: None Returns: None Examples: .. code-block:: python import paddle import paddle.static as static import numpy as np paddle.enable_static() x = static.data(name="x", shape=[10, 10], dtype='float32') y = static.nn.fc(x, 10, name='fc') place = paddle.CPUPlace() exe = static.Executor(place) prog = paddle.static.default_main_program() exe.run(static.default_startup_program()) inputs = np.ones((10, 10), dtype='float32') exe.run(prog, feed={'x': inputs}, fetch_list=[y, ]) path = 'temp/tensor_' for var in prog.list_vars(): if var.persistable: t = var.get_value() paddle.save(t, path+var.name+'.pdtensor') for var in prog.list_vars(): if var.persistable: t_load = paddle.load(path+var.name+'.pdtensor') var.set_value(t_load) ''' # The 'framework' is a low-level module, and 'executor' # can not be imported at the begainning of this file. # Therefore, the above two modules are dynamically imported. from .executor import global_scope if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')): raise TypeError( "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format( type(value) ) ) if scope is not None and not isinstance(scope, core._Scope): raise TypeError( "`scope` should be None or `paddle.static.Scope` type, but received {}.".format( type(scope) ) ) if scope is None: scope = global_scope() var_temp = scope.find_var(self.name) if var_temp is None: raise ValueError( "Can not find Variable '{}' in the Scope.".format(self.name) ) t = var_temp.get_tensor() if hasattr(value, 'shape'): if isinstance(value.shape, (MethodType, FunctionType)): value_shape = value.shape() else: value_shape = value.shape if list(t.shape()) != list(value_shape): raise ValueError( "{} expected a shape {}, but the received shape is {}.".format( self.name, list(t.shape()), list(value_shape) ) ) p = t._place() if p.is_cpu_place(): place = core.CPUPlace() elif p.is_cuda_pinned_place(): place = core.CUDAPinnedPlace() elif p.is_xpu_place(): p = core.Place() p.set_place(t._place()) place = core.XPUPlace(p.xpu_device_id()) elif p.is_npu_place(): p = core.Place() p.set_place(t._place()) place = core.NPUPlace(p.npu_device_id()) elif p.is_mlu_place(): p = core.Place() p.set_place(t._place()) place = core.MLUPlace(p.mlu_device_id()) else: p = core.Place() p.set_place(t._place()) place = core.CUDAPlace(p.gpu_device_id()) t.set(value, place) def size(self): """ Returns the number of elements for current Variable, which is a int64 Variable with shape [1] Returns: Variable, the number of elements for current Variable Examples: .. code-block:: python import paddle paddle.enable_static() # create a static Variable x = paddle.static.data(name='x', shape=[3, 2, 1]) # get the number of elements of the Variable y = x.size() """ output = self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name + "_size"), dtype=core.VarDesc.VarType.INT64, ) self.block.append_op( type='size', inputs={'Input': [self]}, outputs={'Out': [output]} ) return output def _set_attr(self, name, val): """ Set the value of attribute by attribute's name. Args: name(str): the attribute name. val(int|str|list): the value of the attribute. """ self._update_desc_attr(name, val) def _has_attr(self, name): """ Whether this Variable has the attribute with the name `name` or not. Args: name(str): the attribute name. Returns: bool, True if has this attribute. """ return self.desc.has_attr(name) def _remove_attr(self, name): self.desc.remove_attr(name) def _update_desc_attr(self, name, val): """ Update the value of desc's attribute by attribute's name. Args: name(str): the attribute name. val(int|str|list): the value of the attribute. """ self.desc._set_attr(name, val) @property def attr_names(self): """Get the names of all attributes defined.""" return self.desc.attr_names() def attr(self, name): """ Get the attribute by name. Args: name(str): the attribute name. Returns: int|str|list, The attribute value. The return value can be any valid attribute type. """ return self.desc.attr(name) @property def dist_attr(self): """ Get distributed attribute of this Variable. """ return self.desc.dist_attr @dist_attr.setter def dist_attr(self, dist_attr): """ Set distributed attribute of this Variable. """ self.desc.dist_attr = dist_attr def get_all_op_protos(): """ Get all registered op proto from PaddlePaddle C++ end. Returns: list: list of OpProto. """ protostrs = core.get_all_op_protos() ret_values = [] for pbstr in protostrs: op_proto = framework_pb2.OpProto.FromString(bytes(pbstr)) ret_values.append(op_proto) return ret_values class OpProtoHolder: """ A global variable to hold all OpProtos from C++ as a map """ @classmethod def instance(cls): if not hasattr(cls, '_instance'): cls._instance = cls() return cls._instance def __init__(self): assert not hasattr( self.__class__, '_instance' ), 'Please use `instance()` to get OpProtoHolder object!' op_protos = get_all_op_protos() self.op_proto_map = {} for proto in op_protos: self.op_proto_map[proto.type] = proto def get_op_proto(self, type): """ Get OpProto by a type string. Args: type(str): The type that operator registered in C++ side. Returns(framework_pb2.OpProto): The OpProto """ if type not in self.op_proto_map: raise ValueError("Operator \"%s\" has not been registered." % type) return self.op_proto_map[type] def update_op_proto(self): op_protos = get_all_op_protos() custom_op_names = [] for proto in op_protos: if proto.type not in self.op_proto_map: self.op_proto_map[proto.type] = proto custom_op_names.append(proto.type) return custom_op_names @staticmethod def generated_op_attr_names(): return { core.op_proto_and_checker_maker.kOpRoleAttrName(), core.op_proto_and_checker_maker.kOpRoleVarAttrName(), core.op_proto_and_checker_maker.kOpNameScopeAttrName(), core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(), core.op_proto_and_checker_maker.kOpDeviceAttrName(), } class Operator: """ In Fluid, all the operation are represented by Operator, and Operator is regarded as a build in an instruction of a Block. Users can use the build in instructions to describe their neural network. Args: block(Block): The block has the current operator. desc(core.OpDesc): The protobuf description of Operator. type(str): The type of operator. Default None. inputs(dict): The input of this Operator. it is a dictionary, for every element, key is the input parameter name, and value is a list of variables. Default None. outputs(dict): The output of this Operator. it is a dictionary, for every element, key is the input parameter name, and value is a list of variables. Default None. attrs(dict): The attributes of this Operator. it is a dictionary, for every element, key is attribute name, and value is the attribute value. The attribute type should be as same as the type registered in C++ side. Default None. Returns: Operator: The initialized Operator. Raises: ValueError: If the passed input, output and attrs doesn't match the initializing Operator's that registered in C++ side. Notes: The constructor of operator should not be invoked directly. Use Block.append_op or Block._prepend_op instead. Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() # var1 += var2 + var3 cur_block.append_op(type="sum", inputs={"X": [var1, var2, var3]}, outputs={"Out": [var1]}) """ OP_WITHOUT_KERNEL_SET = { 'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv', 'listen_and_serv', 'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify', 'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv', 'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl', 'copy_cross_scope', 'c_gen_cncl_id', } def __init__( self, block, desc, type=None, inputs=None, outputs=None, attrs=None ): # read attr type index from op proto to avoid unexpected type # conversions, e.g. narrowing conversion like double to float try: proto = OpProtoHolder.instance().get_op_proto(type) self._attr_types = {} for attr in proto.attrs: self._attr_types[attr.name] = attr.type except ValueError: pass if _non_static_mode(): if type is None: raise ValueError( "`type` to initialized an Operator can not be None." ) self._type = type self.attrs = attrs if attrs else {} else: self.block = block self.desc = desc # note: not add self.attrs here: # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173 op_attrs = attrs if op_attrs is None: op_attrs = dict() del attrs # attr for static graph mode cuda graph self._cuda_graph_attr = _current_cuda_graph_mode op_maker = core.op_proto_and_checker_maker if op_maker.kOpRoleAttrName() not in op_attrs: op_attrs[ op_maker.kOpRoleAttrName() ] = self.block.program._op_role role_var_name = op_maker.kOpRoleVarAttrName() if ( len(self.block.program._op_role_var) != 0 and role_var_name not in op_attrs ): op_attrs[role_var_name] = self.block.program._op_role_var if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0: del op_attrs[role_var_name] if len(self.desc.type()) != 0: # NOTE(Aurelius84): prog.clone() will lead that var.op is always None, # we add this to fix the problem. for arg in self.desc.output_arg_names(): if block.has_var(arg) and block.var(arg).op is None: block.var(arg).op = self return if type is None: raise ValueError( "`type` to initialized an Operator can not be None." ) else: callstack_var_name = op_maker.kOpCreationCallstackAttrName() op_attrs[callstack_var_name] = [] for frame in traceback.extract_stack(): op_attrs[callstack_var_name].append( ' File "{}", line {}, in {}'.format( frame[0], frame[1], frame[2] ) ) op_attrs[callstack_var_name].append( ' {}'.format(frame[3]) ) self.desc.set_type(type) proto = OpProtoHolder.instance().get_op_proto(type) namescope_var_name = op_maker.kOpNameScopeAttrName() op_attrs[namescope_var_name] = _full_name_scope() # set device for op with kernels, give warning for op without kernels # when force_cpu and device_guard are used at the same time, a warning will be given. # TODO(zhangting2020): when force_cpu is removed, clear warning below. if _current_device is not None: if self._has_kernel(type): op_device = op_maker.kOpDeviceAttrName() op_attrs[op_device] = _current_device else: warnings.warn( "The Op(%s) is not support to set device." % type ) if 'force_cpu' in op_attrs: if ( type == 'less_than' and op_attrs['force_cpu'] is not None ) or op_attrs['force_cpu'] != False: warnings.warn( "The Attr(force_cpu) of Op(%s) will be deprecated in the future, " "please use 'device_guard' instead. 'device_guard' has higher priority when they are " "used at the same time." % type ) if _current_pipeline_stage is not None: pipeline_attr_name = ( 'pipeline_stage' + core.kAutoParallelSuffix() ) self._update_desc_attr( pipeline_attr_name, _current_pipeline_stage ) def find_name(var_list, name): for var_name in var_list: if var_list[var_name] is not None and var_name == name: return True return False if inputs is not None: for in_proto in proto.inputs: found = find_name(inputs, in_proto.name) assert ( found or in_proto.dispensable ), "Input {} not found".format(in_proto.name) if found: in_args = inputs[in_proto.name] if not isinstance(in_args, (list, tuple)): in_args = [in_args] if not in_proto.duplicable and len(in_args) > 1: raise ValueError( "Input %s expects only one input, but %d are given." % (in_proto.name, len(in_args)) ) in_arg_names = [] for index, arg in enumerate(in_args): if isinstance(arg, str): in_arg_names.append(arg) elif isinstance(arg, bytes): in_arg_names.append(arg.decode()) elif isinstance(arg, (Variable, core.VarBase)): in_arg_names.append(arg.name) else: raise TypeError( f"The type of '%{in_proto.name}' in operator {type} should be " f"one of [str, bytes, Variable]. but received : {arg}" ) self.desc.set_input(in_proto.name, in_arg_names) else: self.desc.set_input(in_proto.name, []) if outputs is not None: for m in proto.outputs: if (m.name not in outputs) and m.dispensable: continue if not ((m.name in outputs) or m.dispensable): raise ValueError( ( "Incorrect setting for output(s) of " "operator \"%s\", should set: [%s]." ) % (type, m.name) ) for out_proto in proto.outputs: if out_proto.name not in outputs: continue out_args = outputs[out_proto.name] if not isinstance(out_args, list): out_args = [out_args] if not out_proto.duplicable and len(out_args) > 1: raise ValueError( "Output %s expects only one output, but %d are given." % (out_proto.name, len(out_args)) ) out_arg_names = [] for arg in out_args: if isinstance(arg, str): out_arg_names.append(arg) else: out_arg_names.append(arg.name) # TODO(minqiyang): could we remove variable's op in static graph mode? if not _non_static_mode(): if isinstance(arg, str): block.var(arg).op = self else: arg.op = self self.desc.set_output(out_proto.name, out_arg_names) extra_attrs_map = core.get_op_extra_attrs(type) if op_attrs is not None: if not isinstance(op_attrs, dict): raise TypeError("'attrs' should be a dict.") for attr in proto.attrs: attr_name = attr.name if (attr_name not in op_attrs) or ( op_attrs[attr_name] is None ): continue attr_val = op_attrs[attr_name] self._update_desc_attr(attr_name, attr_val) for attr_name in extra_attrs_map.keys(): if (attr_name not in op_attrs) or ( op_attrs[attr_name] is None ): self._update_desc_attr( attr_name, extra_attrs_map[attr_name] ) else: self._update_desc_attr(attr_name, op_attrs[attr_name]) # proto.attrs doesn't include ipu_index if core.is_compiled_with_ipu(): if global_ipu_index >= 0: self._update_desc_attr( ipu_index_attr_name, global_ipu_index ) if global_ipu_stage >= 0: self._update_desc_attr( ipu_stage_attr_name, global_ipu_stage ) self.desc.check_attrs() if self._has_kernel(type): self.desc.infer_var_type(self.block.desc) self.desc.infer_shape(self.block.desc) def _has_kernel(self, op_type): return op_type not in self.OP_WITHOUT_KERNEL_SET def to_string(self, throw_on_error): """ Get debug string. Args: throw_on_error(bool): Whether to raise exception if self is not initialized. Returns: str: The debug string. """ protostr = self.desc.serialize_to_string() proto = framework_pb2.OpDesc.FromString(bytes(protostr)) return _debug_string_(proto, throw_on_error) def _to_readable_code(self, skip_op_callstack=True): """ Get readable debug string of Operator. .. note:: If you want to get the debug string in protobuf format, please use :code:`to_string` method. Args: skip_op_callstack(bool): whether to skip parsing Operator's attribute op_callstack, default value is True Returns: string: The formatted Operator string. Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() var = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') new_op = cur_block.append_op(type="abs", inputs={"X": [var]}, outputs={"Out": [var]}) print(new_op._to_readable_code()) """ assert isinstance( skip_op_callstack, bool ), "skip_op_callstack parameter's type is error, expect bool, received {}".format( type(skip_op_callstack) ) outputs_str = "{" for i in range(0, len(self.output_names)): outputs_str += "{name}=".format(name=self.output_names[i]) o = self.output(self.output_names[i]) outputs_str += "{value}".format(value=o) if i != len(self.output_names) - 1: outputs_str += ", " outputs_str += "}" inputs_str = "{" for i in range(0, len(self.input_names)): inputs_str += "{name}=".format(name=self.input_names[i]) o = self.input(self.input_names[i]) inputs_str += "{value}".format(value=o) if i != len(self.input_names) - 1: inputs_str += ", " inputs_str += "}" attr_names = sorted(self.attr_names) attrs_str = "" for i in range(0, len(attr_names)): name = attr_names[i] if skip_op_callstack and name == "op_callstack": continue attr_type = self.desc.attr_type(name, True) if attr_type == core.AttrType.VAR: attr_var_name = self.desc.attr(name, True).name() a = "{name} = Var['{value}']".format( name=name, type=attr_type, value=attr_var_name ) attrs_str += a if i != len(attr_names) - 1: attrs_str += ", " continue if attr_type == core.AttrType.VARS: attr_var_names = [ "'%s'" % var.name() for var in self.desc.attr(name, True) ] a = "{name} = Vars[{value}]".format( name=name, type=attr_type, value=','.join(attr_var_names) ) attrs_str += a if i != len(attr_names) - 1: attrs_str += ", " continue if attr_type == core.AttrType.BLOCK: a = "{name} = block[{value}]".format( name=name, type=attr_type, value=self._block_attr_id(name) ) attrs_str += a if i != len(attr_names) - 1: attrs_str += ", " continue if attr_type == core.AttrType.BLOCKS: a = "{name} = blocks{value}".format( name=name, type=attr_type, value=self._blocks_attr_ids(name) ) attrs_str += a if i != len(attr_names) - 1: attrs_str += ", " continue # it is bytes of serialized protobuf if ( is_compiled_with_cinn() and self.type == 'cinn_launch' and name == 'compilation_key' ): key = self.desc.attr(name) v = core.get_serialize_comile_key(key) prog = Program() prog = prog.parse_from_string(v) s = prog._to_readable_code() lines = s.split('\n') value = '\n'.join([' ' + line for line in lines]) value = '\n' + value else: value = self.desc.attr(name) a = "{name} = {value}".format( name=name, type=attr_type, value=value ) attrs_str += a if i != len(attr_names) - 1: attrs_str += ", " from paddle.distributed.auto_parallel.dist_context import ( get_default_distributed_context, ) dist_context = get_default_distributed_context() dist_op = dist_context.get_dist_op_for_program(self) if dist_op is not None: attrs_str += ", {name} = {value}".format( name="dist_attr", value=dist_op ) if outputs_str != "{}": op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format( outputs=outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str, ) else: op_str = "{op_type}(inputs={inputs}, {attrs})".format( op_type=self.type, inputs=inputs_str, attrs=attrs_str ) return op_str def __str__(self): return self._to_readable_code() __repr__ = __str__ @property def type(self): return self.desc.type() def input(self, name): r""" Get the input arguments according to the input parameter name. Args: name(str): The input parameter name. Returns: list, return the list of argument names that associated with \ the specific parameter name. """ return self.desc.input(name) def _rename_input(self, old_name, new_name): """ Rename the `old_name` to `new_name`. Args: old_name(str): The old name of the Operator's input. new_name(str): The new name of the Operator's input. Returns: None """ self.desc._rename_input(old_name, new_name) def _rename_output(self, old_name, new_name): """ Rename the `old_name` to `new_name`. Args: old_name(str): The old name of the Operator's output. new_name(str): The new name of the Operator's output. Returns: None """ self.desc._rename_output(old_name, new_name) @property def input_names(self): return self.desc.input_names() @property def input_arg_names(self): return self.desc.input_arg_names() @property def output_arg_names(self): return self.desc.output_arg_names() def output(self, name): r""" Get output arguments by the output parameter name. Args: name(str): The output parameter name. Returns: list: return the list of argument names associated with \ the specific parameter name. """ return self.desc.output(name) @property def output_names(self): return self.desc.output_names() @property def idx(self): for i, op in enumerate(self.block.ops): if op == self: return i raise ValueError( "Can't find op itself in it's block. It could be a bug of Paddle." ) def has_attr(self, name): """ Whether this Operator has the attribute with name or not. Args: name(str): the attribute name. Returns: bool: True if has this attribute. """ return self.desc.has_attr(name) def attr_type(self, name): """ Get the type of attribute by attribute's name. Args: name(str): the attribute name. Returns: core.AttrType: the attribute type. """ return self.desc.attr_type(name, True) def _set_attr(self, name, val): """ Set the value of attribute by attribute's name. Args: name(str): the attribute name. val(bool|int|str|float|list): the value of the attribute. Raises: ValueError: If the type of value doesn't match with desc.attr_type(name). """ self._update_desc_attr(name, val) def _remove_attr(self, name): self.desc.remove_attr(name) def _update_desc_attr(self, name, val): """ Update the value of desc's attribute by attribute's name. Args: name(str): the attribute name. val(bool|int|str|float|list): the value of the attribute. Raises: ValueError: If the type of value doesn't match with desc.attr_type(name). """ if isinstance(val, Variable): self.desc.set_var_attr(name, val.desc) elif isinstance(val, list) and _all_is_type(val, Variable): self.desc.set_vars_attr(name, [v.desc for v in val]) elif isinstance(val, Block): self.desc.set_block_attr(name, val.desc) elif isinstance(val, list) and val and _all_is_type(val, Block): self.desc.set_blocks_attr(name, [v.desc for v in val]) elif isinstance(val, core.BlockDesc) or isinstance( val, core.ProgramDesc ): self.desc.set_serialized_attr(name, val.serialize_to_string()) else: self._update_desc_plain_attr(name, val) def _update_desc_plain_attr(self, name, val): desc = self.desc if not hasattr(self, "_attr_types") or (name not in self._attr_types): desc._set_attr(name, val) return type_index = self._attr_types[name] if type_index == core.AttrType.BOOL: desc._set_bool_attr(name, val) elif type_index == core.AttrType.INT: desc._set_int32_attr(name, val) elif type_index == core.AttrType.LONG: desc._set_int64_attr(name, val) elif type_index == core.AttrType.FLOAT: desc._set_float32_attr(name, val) # elif type_index == core.AttrType.FLOAT64: # desc._set_float64_attr(name, val) elif type_index == core.AttrType.STRING: desc._set_str_attr(name, val) elif type_index == core.AttrType.BOOLS: desc._set_bools_attr(name, val) elif type_index == core.AttrType.INTS: desc._set_int32s_attr(name, val) elif type_index == core.AttrType.LONGS: desc._set_int64s_attr(name, val) elif type_index == core.AttrType.FLOATS: desc._set_float32s_attr(name, val) elif type_index == core.AttrType.FLOAT64S: desc._set_float64s_attr(name, val) elif type_index == core.AttrType.STRINGS: desc._set_strs_attr(name, val) else: # defaults to old methods desc._set_attr(name, val) @property def attr_names(self): return self.desc.attr_names(True) def attr(self, name): """ Get the attribute by name. Args: name(str): the attribute name. Returns: bool|int|str|float|list: The attribute value. The return value can be any valid attribute type. """ return self.desc.attr(name) def _block_attr_id(self, name): """ Get the block attribute's id by name. Args: name(str): the attribute name. Returns: int: the block index. """ return self.desc._block_attr_id(name) def _block_attr(self, name): """ Get the block attribute by name. Args: name(str): the attribute name. Returns: block: the block attribute. """ id = self._block_attr_id(name) assert id >= 0 and id < len(self.block.program.blocks) return self.block.program.blocks[id] def _blocks_attr(self, name): """ Get the blocks attribute by name. Args: name(str): the attribute name. Returns: list: list of the blocks attribute. """ attrs = [] for i in self._blocks_attr_ids(name): assert i >= 0 and i < len(self.block.program.blocks) attrs.append(self.block.program.blocks[i]) return attrs def _blocks_attr_ids(self, name): """ Get the blocks attribute's ids by name. Args: name(str): the attribute name. Returns: list: list of the blocks ids. """ return self.desc._blocks_attr_ids(name) def _var_attr(self, name): """ Get the Variable attribute by name. Args: name(str): the attribute name. Returns: Variable: the Variable attribute. """ attr_type = self.desc.attr_type(name, True) assert ( attr_type == core.AttrType.VAR ), "Required type attr({}) is Variable, but received {}".format( name, attr_type ) attr_var_name = self.desc.attr(name, True).name() return self.block._var_recursive(attr_var_name) def _vars_attr(self, name): """ Get the Variables attribute by name. Args: name(str): the attribute name. Returns: Variables: the Variables attribute. """ attr_type = self.desc.attr_type(name, True) assert ( attr_type == core.AttrType.VARS ), "Required type attr({}) is list[Variable], but received {}".format( name, attr_type ) attr_vars = [ self.block._var_recursive(var.name()) for var in self.desc.attr(name, True) ] return attr_vars def all_attrs(self): """ Get the attribute dict. Returns: dict: The Operator's attribute dict, name->attr. """ attr_names = self.attr_names attr_map = {} for n in attr_names: attr_type = self.desc.attr_type(n, True) if attr_type == core.AttrType.BLOCK: attr_map[n] = self._block_attr(n) elif attr_type == core.AttrType.BLOCKS: attr_map[n] = self._blocks_attr(n) elif attr_type == core.AttrType.VAR: attr_map[n] = self._var_attr(n) elif attr_type == core.AttrType.VARS: attr_map[n] = self._vars_attr(n) else: attr_map[n] = self.attr(n) return attr_map def _is_optimize_op(self): op_maker = core.op_proto_and_checker_maker OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize if not self.desc.has_attr(op_maker.kOpRoleAttrName()): return False op_role = self.desc.attr(op_maker.kOpRoleAttrName()) if op_role & int(OPTIMIZE): return True return False def _is_backward_op(self): op_maker = core.op_proto_and_checker_maker BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward if not self.desc.has_attr(op_maker.kOpRoleAttrName()): return False op_role = self.desc.attr(op_maker.kOpRoleAttrName()) if op_role & int(BACKWARD): return True return False @property def dist_attr(self): """ Get distributed attribute of this Variable. """ return self.desc.dist_attr @dist_attr.setter def dist_attr(self, dist_attr): """ Set distributed attribute of this Variable. """ self.desc.dist_attr = dist_attr class Block: """ In Fluid, a Program is consistence of multi-Block, and Block stores VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name. One block could have some child blocks, and child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that is stored in the parent block. Please reference the framework.proto for details. Args: program(Program): The Program that the Block belongs to. idx(int): The block's id in the Program. Notes: The constructor of Block should not be invoked directly. Please use `Program._create_block()` to create a block. Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() var = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') cur_block.append_op(type="abs", inputs={"X": [var]}, outputs={"Out": [var]}) """ def __init__(self, program, idx): self.desc = program.desc.block(idx) self.vars = collections.OrderedDict() # var_name --> var self.ops = list() # operator list self.program = program self.removed_vars = collections.OrderedDict() def __str__(self): return self._to_readable_code() def _to_readable_code(self, skip_op_callstack=True): """ Get readable debug string of Block. .. note:: If you want to get the debug string in protobuf format, please use :code:`to_string` method. Args: skip_op_callstack(bool): whether to skip parsing Operator's attribute op_callstack, default value is True Returns: string: The formatted Block string. Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_var = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') new_op = cur_block.append_op(type="abs", inputs={"X": [new_var]}, outputs={"Out": [new_var]}) print(cur_block._to_readable_code()) """ assert isinstance( skip_op_callstack, bool ), "skip_op_callstack parameter's type is error, expect bool, received {}".format( type(skip_op_callstack) ) block_str = "{ // block " block_str += "{}\n".format(self.idx) for var in list(self.vars.values()): block_str += " {}\n".format(var._to_readable_code()) block_str += "\n" for op in self.ops: block_str += " {}\n".format( op._to_readable_code(skip_op_callstack) ) block_str += "}" return block_str def to_string(self, throw_on_error, with_details=False): """ Get debug string. Args: throw_on_error(bool): raise exception when self is not initialized when throw_on_error is True. with_details(bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default False. Returns: str: The debug string. """ assert isinstance(throw_on_error, bool) and isinstance( with_details, bool ) if with_details: re_add_indent = re.compile(r"\n(.)") res_str = "blocks {\n idx: %d\n parent_idx: %d" % ( self.idx, self.parent_idx, ) for var in list(self.vars.values()): res_str += "\n vars {\n %s }" % re_add_indent.sub( r"\n \1", var.to_string(throw_on_error, with_details) ) for op in self.ops: res_str += "\n ops {\n %s }" % re_add_indent.sub( r"\n \1", op.to_string(throw_on_error) ) res_str += "\n}" else: protostr = self.desc.serialize_to_string() proto = framework_pb2.BlockDesc.FromString(bytes(protostr)) res_str = _debug_string_(proto, throw_on_error) return res_str __repr__ = __str__ @property def parent_idx(self): return self.desc.parent @property def forward_block_idx(self): return self.desc.get_forward_block_idx() def _set_forward_block_idx(self, idx): """ Set the forward block Idx. Args: idx(int): the block index. Returns: None """ self.desc._set_forward_block_idx(idx) @property def backward_block_idx(self): cur_block_idx = self.idx for block in self.program.blocks: if block.forward_block_idx == cur_block_idx: return block.idx return -1 @property def idx(self): return self.desc.id def var(self, name): """ Get a Variable by name from this block. Args: name(str): the Variable's name. Raises: ValueError: The If input's type is not str, or this block doesn't have a Variable with the giving name. Returns: Variable: the Variable with the giving name. """ if not isinstance(name, str): raise TypeError( "var require string as parameter, but get %s instead." % (type(name)) ) v = self.vars.get(name, None) if v is None: raise ValueError("var %s not in this block" % name) return v def _find_var_recursive(self, name): """ Get a Variable by name from this block recursively. Args: name(str): the Variable's name. Returns: Variable: the Variable with the giving name. Or None if not found. """ frontier = list() visited = set() frontier.append(self) prog = self.program while len(frontier) != 0: # BFS cur = frontier[0] frontier = frontier[1:] if id(cur) in visited: continue if cur.has_var(name): return cur.var(name) if cur.parent_idx != -1: frontier.append(prog.block(cur.parent_idx)) if cur.forward_block_idx != -1: frontier.append(prog.block(cur.forward_block_idx)) visited.add(id(cur)) return None def _var_recursive(self, name): """ Get a Variable by name from this block recursively. Args: name(str): the Variable's name. Raises: ValueError: this block and this parent block doesn't have a Variable with the giving name. Returns: Variable: the Variable with the giving name. """ var = self._find_var_recursive(name) if var: return var else: raise ValueError("Var {0} is not found recursively".format(name)) def all_parameters(self): return list(self.iter_parameters()) def iter_parameters(self): return ( item[1] for item in self.vars.items() if isinstance(item[1], Parameter) ) def create_var(self, *args, **kwargs): if _non_static_mode(): var = _varbase_creator(*args, **kwargs) else: var = Variable(block=self, *args, **kwargs) if 'initializer' in kwargs: kwargs['initializer'](var, self) return var def has_var(self, name): return name in self.vars def _rename_var(self, name, new_name): """ Rename variable in vars and ops' inputs and outputs Args: name(str|bytes): the name that need to be renamed. new_name(str|bytes): the name that need to rename to. Raises: ValueError: If this block doesn't have this the giving name, or the type of the var with the giving name is not Parameter or Variable. Returns: Variable: the Variable with the giving name. """ # Ensure the type of name and new_name is str name = name.decode() if isinstance(name, bytes) else name new_name = ( new_name.decode() if isinstance(new_name, bytes) else new_name ) if not self.has_var(name): raise ValueError("var %s is not in current block" % name) v = self.var(name) if type(v) == Parameter: var_type = "Parameter" stop_gradient = v.stop_gradient trainable = v.trainable optimize_attr = v.optimize_attr regularizer = v.regularizer error_clip = v.error_clip elif type(v) == Variable: var_type = "Variable" error_clip = v.error_clip stop_gradient = v.stop_gradient else: raise ValueError("unsupported var type: %s", type(v)) orig_var_type = v.type self.desc._rename_var(name.encode(), new_name.encode()) # NOTE: v is destroyed by C++ after calling _rename_var. d = self.desc.find_var(new_name.encode()) if var_type == "Parameter": if in_dygraph_mode(): var = EagerParamBase( d.shape(), d.dtype(), type=orig_var_type, name=new_name, stop_gradient=stop_gradient, trainable=trainable, optimize_attr=optimize_attr, regularizer=regularizer, error_clip=error_clip, ) else: var = Parameter( self, d.shape(), d.dtype(), type=orig_var_type, name=new_name, stop_gradient=stop_gradient, trainable=trainable, optimize_attr=optimize_attr, regularizer=regularizer, error_clip=error_clip, ) elif var_type == "Variable": var = Variable( self, type=orig_var_type, name=new_name, error_clip=error_clip, stop_gradient=stop_gradient, ) # rename the python side, _sync_with_cpp will only add # new vars/ops to python side. self.vars[new_name] = var del self.vars[name] self._sync_with_cpp() return var def _remove_var(self, name, sync=True): if sync == True: self._sync_with_cpp() self.desc._remove_var(name.encode()) del self.vars[name] def create_parameter(self, *args, **kwargs): global_block = self.program.global_block() param = None if in_dygraph_mode(): param = EagerParamBase(*args, **kwargs) else: param = Parameter(global_block, *args, **kwargs) if 'initializer' in kwargs: def _is_inited_by(block, var): init_ops = [] for op in block.ops: if var.name in op.output_arg_names: # In startup_program, "c_broadcast" and "c_sync_comm_stream" # are treated as initialization ops that cause error. # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here. # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support if op.type in [ "c_broadcast", "c_sync_comm_stream", "coalesce_tensor", ]: continue init_ops.append(op) return init_ops initializer = kwargs['initializer'] init_ops = _is_inited_by(global_block, param) init_ops_len = len(init_ops) if init_ops_len > 1: raise RuntimeError( "param " + param.name + " is inited by multiple init ops " + str(init_ops) ) elif init_ops_len == 1: # TODO already inited, do nothing, should log a warning pass else: initializer(param, self) return param def append_op(self, *args, **kwargs): """ Appends a new Operator according to the giving arguments. Returns: Operator: the append Operator. """ if _non_static_mode(): attrs = kwargs.get("attrs", {}) inplace_map = kwargs.get("inplace_map", None) type = kwargs.get("type", None) warnings.warn( "Op `%s` is executed through `append_op` under the dynamic mode, " "the corresponding API implementation needs to be upgraded to " "using `_C_ops` method." % type, DeprecationWarning, ) op = Operator( block=self, desc=None, type=type, inputs=None, outputs=None, attrs=attrs, ) # record ops in tracer rather than blocks # # TODO(minqiyang): add op stop_gradient support in static graph mode too. # currently, we only support stop_gradient in dygraph mode. _dygraph_tracer().trace_op( type, kwargs.get("inputs", {}), kwargs.get("outputs", {}), attrs if attrs else {}, kwargs.get("stop_gradient", False), inplace_map, ) else: from paddle.fluid.dygraph.base import param_guard op_desc = self.desc.append_op() # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should # be converted into Variable(s) with same name and block location. # This is ONE and ONLY logic of type transformation of dy2static. inputs = kwargs.get("inputs", None) outputs = kwargs.get("outputs", None) with param_guard(inputs), param_guard(outputs): op = Operator( block=self, desc=op_desc, type=kwargs.get("type", None), inputs=inputs, outputs=outputs, attrs=kwargs.get("attrs", None), ) self.ops.append(op) return op def _insert_op(self, index, *args, **kwargs): """ Insert a Operator according to the giving arguments. Args: index(int): the place that the operator to insert. Returns: Operator: the insert Operator. """ self._sync_with_cpp() return self._insert_op_without_sync(index, *args, **kwargs) def _insert_op_without_sync(self, index, *args, **kwargs): """ Insert an Operator according to the giving arguments, without sync_with_cpp to meke the compilation faster. Args: index(int): the place that the operator to insert. Returns: Operator: the insert Operator. """ op_desc = self.desc._insert_op(index) op = Operator(block=self, desc=op_desc, *args, **kwargs) self.ops.insert(index, op) return op def _remove_op(self, index, sync=True): """ Remove the specific position operator. Args: index(int): the position that the operator to insert. Returns: None """ if sync == True: self._sync_with_cpp() self.desc._remove_op(index, index + 1) del self.ops[index] def _slice_ops(self, start, end): """ Return the Operator between start and end. Args: start(int): the start position. end(int): the end position. Returns: list: the Operators between start and end. """ return self.ops[start:end] def _prepend_op(self, *args, **kwargs): if _non_static_mode(): type = kwargs.get("type", None) attrs = kwargs.get("attrs", {}) op = Operator( self, None, type=type, inputs=None, outputs=None, attrs=attrs ) _dygraph_tracer().trace_op( type, kwargs.get("inputs", {}), kwargs.get("outputs", {}), attrs if attrs else {}, kwargs.get("stop_gradient", False), ) else: op_desc = self.desc._prepend_op() op = Operator( self, op_desc, type=kwargs.get("type", None), inputs=kwargs.get("inputs", None), outputs=kwargs.get("outputs", None), attrs=kwargs.get("attrs", None), ) self.ops.insert(0, op) return op def _sync_with_cpp(self): """ Sync from the desc on the c++ end. This method is used to synchronize the c++ desc instance generated by backward. """ # sync variables from cpp for var in self.desc.all_vars(): if not self.has_var(var.name()): is_stop_gradient = False if var.has_stop_gradient(): is_stop_gradient = var.stop_gradient() if var.has_is_parameter() and var.is_parameter(): self.create_parameter( name=var.name(), desc=var, type=var.type(), shape=var.shape(), dtype=var.dtype(), stop_gradient=is_stop_gradient, ) else: self.create_var( name=var.name(), desc=var, type=var.type(), stop_gradient=is_stop_gradient, ) # sync variables removed from c++ end for var in list(self.vars.keys()): if not self.desc.find_var(var.encode()): self.vars.pop(var) # sync operators from cpp ops_in_cpp = [] for op_idx in range(0, self.desc.op_size()): ops_in_cpp.append(self.desc.op(op_idx)) if len(self.ops) != 0: first_op_in_python = self.ops[0].desc last_op_in_python = self.ops[len(self.ops) - 1].desc start_index = None end_index = None for index in range(len(ops_in_cpp)): if first_op_in_python == ops_in_cpp[index]: start_index = index if last_op_in_python == ops_in_cpp[index]: end_index = index assert start_index is not None assert end_index is not None assert start_index <= end_index else: start_index = 0 end_index = -1 # sync ops append to the head of cpp_ops for index in range((start_index - 1 - 1), -1, -1): op_desc = ops_in_cpp[index] op = Operator(self, op_desc) self.ops.insert(0, op) # sync ops append to the end of cpp_ops for index in range((end_index + 1), len(ops_in_cpp)): op_desc = ops_in_cpp[index] op = Operator(self, op_desc) self.ops.append(op) # sync ops removed from c++ end if end_index != -1 and end_index < len(self.ops): ops_in_cpp_index = 0 ops_in_python_index = 0 while ops_in_python_index < len( self.ops ) and ops_in_cpp_index < len(ops_in_cpp): if ( self.ops[ops_in_python_index].desc != ops_in_cpp[ops_in_cpp_index] ): del self.ops[ops_in_python_index] else: ops_in_cpp_index += 1 ops_in_python_index += 1 assert len(self.ops) == len(ops_in_cpp) for index in range(len(self.ops)): assert self.ops[index].desc == ops_in_cpp[index] def _copy_param_info_from(self, other): """ Copy the information of parameters from the other block. Args: other(Block): the other block. Raises: ValueError: If type of input is not Block, or the `other` and this block is not in the same topology. Returns: None """ if not isinstance(other, Block): raise TypeError( "_copy_param_info_from should be invoked with Block" ) for p in other.iter_parameters(): assert isinstance(p, Parameter) v = self.vars.get(p.name, None) if v is None: # if the Parameter is pruned, v may be None continue assert isinstance(v, Variable) new_p = None if in_dygraph_mode(): new_p = EagerParamBase( shape=v.shape, dtype=v.dtype, type=v.type, lod_level=v.lod_level, stop_gradient=p.stop_gradient, trainable=p.trainable, optimize_attr=p.optimize_attr, regularizer=p.regularizer, error_clip=p.error_clip, name=v.name, ) else: new_p = Parameter( block=self, shape=v.shape, dtype=v.dtype, type=v.type, lod_level=v.lod_level if v.type == core.VarDesc.VarType.LOD_TENSOR else None, stop_gradient=p.stop_gradient, trainable=p.trainable, optimize_attr=p.optimize_attr, regularizer=p.regularizer, error_clip=p.error_clip, name=v.name, ) self.vars[new_p.name] = new_p def _clone_variable(self, var, force_persistable=True): """ Clone a variable into current block. Args: var: the variable to be cloned. force_persistable(bool): True means setting the result variable to being persistable. False means setting the persistable the same with that of input var. default: True. Returns: Variable: the new variable cloned from 'var' in current block. """ assert isinstance(var, Variable) ret_var = None # make STEP_SCOPES var can be safely cloned. if var.type == core.VarDesc.VarType.STEP_SCOPES: ret_var = self.create_var( name=var.name, persistable=var.persistable, type=var.type ) elif var.type == core.VarDesc.VarType.RAW: ret_var = self.create_var( name=var.name, persistable=var.persistable, type=var.type ) elif var.type == core.VarDesc.VarType.SELECTED_ROWS: ret_var = self.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, persistable=True if force_persistable else var.persistable, is_data=var.is_data, need_check_feed=var.desc.need_check_feed(), ) else: ret_var = self.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, persistable=True if force_persistable else var.persistable, is_data=var.is_data, need_check_feed=var.desc.need_check_feed(), ) return ret_var # NOTE(zjl): you should be careful that after you call this method, # some Python Variable and all Python Operators should not be used # again. Because all Python Variables and all Python Operators are # re-constructed inside this method. The underlying VarDesc(OpDesc) # of some old Python Variables(all old Python Operators) may have # been destructed. def _apply_pass( main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={} ): assert isinstance(pass_attrs, dict), "pass_attrs must be dict" assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict" tmp_main_program = core.ProgramDesc(main_program.desc) tmp_startup_program = core.ProgramDesc(startup_program.desc) attrs = core.apply_pass( tmp_main_program, tmp_startup_program, pass_name, pass_attrs, pass_attr_types, ) main_program._rebuild_from_desc(tmp_main_program) startup_program._rebuild_from_desc(tmp_startup_program) return attrs class IrNode: """ Python IrNode. Beneath it is a core.Node, which is used for Ir Pass. """ def __init__(self, node): """ Construct an IrNode using core.Node. Args: node(core.Node): C++ Node. """ assert isinstance( node, core.Node ), 'node must be the instance of core.Node.' self.node = node def name(self): """ Return the node name. Returns: str: node name. """ return self.node.name() def node_type(self): """ Return the node type. Returns: core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable). """ return self.node.node_type() def var(self): """ Return the node variable description. Returns: core.VarDesc: node variable description. """ return self.node.var() def op(self): """ Return the node operator description. Returns: core.OpDesc: node operator description. """ return self.node.op() def id(self): """ Return the node id. Returns: int: node id. """ return self.node.id() def is_op(self): """ If the node is an operator, then return true. Returns: bool: indicate whether the node is an operator. """ return self.node.is_op() def is_var(self): """ If the node is a variable, then return true. Returns: bool: indicate whether the node is a variable. """ return self.node.is_var() def is_ctrl_var(self): """ If the node is a control dependence variable, then return true. Returns: bool: indicate whether the node is a control dependence variable. """ return self.node.is_ctrl_var() def clear_inputs(self): """ Clear the node inputs. After executing the `clear_inputs` function, the node inputs will be empty. """ self.node.clear_inputs() def remove_input_by_id(self, node_id): """ Remove a node from inputs by the given node id. Args: node_id(int): the given node id. """ self.node.remove_input(node_id) def remove_input(self, node): """ Remove a node from inputs. Args: node(IrNode): the node being removed. """ self.node.remove_input(node.node) def append_input(self, node): """ Append a node in inputs. Args: node(IrNode): the node being appended. """ self.node.append_input(node.node) def clear_outputs(self): """ Clear the node outputs. After executing the `clear_outputs` function, the node outputs will be empty. """ self.node.clear_outputs() def remove_output_by_id(self, node_id): """ Remove a node from outputs by the given node id. Args: node_id(int): the given node id. """ self.node.remove_output(node_id) def remove_output(self, node): """ Remove a node from outputs. Args: node(IrNode): the node being removed. """ self.node.remove_output(node.node) def append_output(self, node): """ Append a node in outputs. Args: node(IrNode): the node being appended. """ self.node.append_output(node.node) @property def inputs(self): """ Return the node inputs. Returns: list(IrNode): node inputs wrapped by IrNode. """ return [IrNode(n) for n in self.node.inputs] @property def outputs(self): """ Return the node outputs. Returns: list(IrNode): node outputs wrapped by IrNode. """ return [IrNode(n) for n in self.node.outputs] class IrVarNode(IrNode): """ Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode. """ def __init__(self, node): """ Construct an IrVarNode using core.Node. Args: node(core.Node): C++ Node. """ assert ( isinstance(node, core.Node) and node.is_var() ), 'node must be the instance of core.Node and it must be a variable node.' super().__init__(node) self.node = node def set_shape(self, shape): """ Set the node variable shape. Args: shape(list): shape to be set. """ assert ( self.node.var() is not None ), "The node variable description can not be None." self.node.var().set_shape(shape) def persistable(self): """ If the variable node is a persistable variable, then return true. Returns: bool: indicate whether the variable is persistable. """ assert ( self.node.var() is not None ), "The node variable description can not be None." return self.node.var().persistable() def type(self): """ Return the variable type. Returns: core.VarDesc.VarType: the variable type. """ assert ( self.node.var() is not None ), "The node variable description can not be None." return self.node.var().type() def dtype(self): """ Return the variable data type. Returns: core.VarDesc.VarType: the variable data type. """ assert ( self.node.var() is not None ), "The node variable description can not be None." return self.node.var().dtype() def shape(self): """ Return the variable shape. Returns: list: the variable shape. """ assert ( self.node.var() is not None ), "The node variable description can not be None." return self.node.var().shape() @property def inputs(self): """ Return the node inputs. Returns: list(IrOpNode): node inputs wrapped by IrOpNode. """ return [IrOpNode(n) for n in self.node.inputs] @property def outputs(self): """ Return the node outputs. Returns: list(IrOpNode): node outputs wrapped by IrOpNode. """ return [IrOpNode(n) for n in self.node.outputs] class IrOpNode(IrNode): """ Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode. """ def __init__(self, node): """ Construct an IrOpNode using core.Node. Args: node(core.Node): C++ Node. """ assert ( isinstance(node, core.Node) and node.is_op() ), 'node must be the instance of core.Node and it must be a operator node.' super().__init__(node) self.node = node def rename_input(self, old_input_name, new_input_name): """ Rename the input of this node. Args: old_input_name(str): the old input name. new_input_name(str): the new input name. """ assert ( self.node.op() is not None ), "The node operator description can not be None." self.node.op()._rename_input(old_input_name, new_input_name) def rename_output(self, old_output_name, new_output_name): """ Rename the output of this node. Args: old_output_name(str): the old output name. new_output_name(str): the new output name. """ assert ( self.node.op() is not None ), "The node operator description can not be None." self.node.op()._rename_output(old_output_name, new_output_name) def input(self, name): """ Get the argument name list by the parameter name for input. Args: name(str): the parameter name. Returns: list(str): the argument name list. """ assert ( self.node.op() is not None ), "The node operator description can not be None." return self.node.op().input(name) def output(self, name): """ Get the argument name list by the parameter name for output. Args: name(str): the parameter name. Returns: list(str): the argument name list. """ assert ( self.node.op() is not None ), "The node operator description can not be None." return self.node.op().output(name) def set_type(self, new_type): """ Change the operator type into new type. Args: new_type(str): new operator type to be set. """ assert ( self.node.op() is not None ), "The node operator description can not be None." return self.node.op().set_type(new_type) def set_attr(self, name, val): """ Set the value of attribute by attribute's name. Args: name(str): the attribute name. val(bool|int|str|float|list): the value of the attribute. """ self._update_desc_attr(name, val) def _update_desc_attr(self, name, val): """ Update the value of the op desc's attribute by attribute's name. """ assert ( self.node.op() is not None ), "The node operator description can not be None." desc = self.node.op() if isinstance(val, Variable): desc.set_var_attr(name, val.desc) elif isinstance(val, list) and _all_is_type(val, Variable): desc.set_vars_attr(name, [v.desc for v in val]) elif isinstance(val, Block): desc.set_block_attr(name, val.desc) elif isinstance(val, list) and val and _all_is_type(val, Block): desc.set_blocks_attr(name, [v.desc for v in val]) elif isinstance(val, core.BlockDesc) or isinstance( val, core.ProgramDesc ): desc.set_serialized_attr(name, val.serialize_to_string()) else: desc._set_attr(name, val) def input_arg_names(self): """ Return input arguments' names of this op node. Returns: list(str): input arguments' names of this op node. """ assert ( self.node.op() is not None ), "The node operator description can not be None." return self.node.op().input_arg_names() def output_arg_names(self): """ Return output arguments' names of this op node. Returns: list(str): output arguments' names of this op node. """ assert ( self.node.op() is not None ), "The node operator description can not be None." return self.node.op().output_arg_names() @property def inputs(self): """ Return the node inputs. Returns: list(IrVarNode): node inputs wrapped by IrVarNode. """ return [IrVarNode(n) for n in self.node.inputs] @property def outputs(self): """ Return the node outputs. Returns: list(IrVarNode): node outputs wrapped by IrVarNode. """ return [IrVarNode(n) for n in self.node.outputs] class IrGraph: """ Python IrGraph. Beneath it is a core.Graph, which is used for creating a c++ Ir Pass Graph. An IrGraph is just a graph view of a Program. In an IrGraph, both Variables and Operators are graph nodes. """ def __init__(self, graph, for_test=False): """ Construct an IrGraph using core.Graph. Args: graph(core.Graph): C++ Graph. for_test(bool): True for the test graph and false for the train graph. """ assert isinstance( graph, core.Graph ), 'graph must be the instance of core.Graph.' self.graph = graph self._for_test = for_test def clone(self): """ Create a new and duplicated IrGraph. Warns: The method only clones the graph structure, not its attributes. Returns: IrGraph: A new and duplicated graph. """ g = self.graph.clone() return IrGraph(g, self._for_test) def is_test(self): """ If the graph is used for testing, the function returns true. Otherwise, returns false. """ return self._for_test def all_nodes(self): """ Return all nodes included in the graph as a set. """ return {IrNode(node) for node in self.graph.nodes()} def all_var_nodes(self): """ Return all variable nodes included in the graph as a set. """ return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()} def all_persistable_nodes(self): """ Return all persistable variable nodes included in the graph as a set. """ persistable_nodes = set() for node in self.graph.nodes(): if ( node.is_var() and node.var() is not None and node.var().persistable() ): persistable_nodes.add(node) return {IrVarNode(p) for p in persistable_nodes} def all_op_nodes(self): """ Return all operator nodes included in the graph as a set. """ return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()} def all_sub_graphs(self, for_test=False): """ Return all sub_graphs included in the main graph as a set. """ return [ IrGraph(self.graph.get_sub_graph(i), for_test=for_test) for i in range(self.graph.sub_graph_size()) ] def get_sub_graph(self, i, for_test=False): """ Return i-th sub_graph in the main graph. """ return IrGraph(self.graph.get_sub_graph(i), for_test=for_test) def create_persistable_node(self, name, var_type, shape, var_dtype): """ Create a persistable variable node in the graph. In IrGraph, it can not distinguish between persistable variables and parameters. Args: name(str): the name of the persistable variable node. vart_type(core.VarDesc.VarType): the type of the persistable variable node. shape(list): the shape of the persistable variable node. var_dtype(core.VarDesc.VarType): the data type of the persistable variable node. Returns: IrVarNode: the created persistable variable node. """ var_desc = core.VarDesc(name) var_desc.set_type(var_type) var_desc.set_shape(shape) var_desc.set_dtype(var_dtype) var_desc.set_persistable(True) return IrVarNode(self.graph.create_var_node(var_desc)) def create_var_node(self, name, var_type, shape, var_dtype): """ Create a variable node in the graph. The created variable node is not persistable. Args: name(str): the name of the variable node. vart_type(core.VarDesc.VarType): the type of the variable node. shape(list): the shape of the variable node. var_dtype(core.VarDesc.VarType): the data type of the variable node. Returns: IrVarNode: the created variable node. """ var_desc = core.VarDesc(name) var_desc.set_type(var_type) var_desc.set_shape(shape) var_desc.set_dtype(var_dtype) return IrVarNode(self.graph.create_var_node(var_desc)) def create_control_dep_var(self): """ create a control var """ return IrVarNode(self.graph.create_control_dep_var()) def create_var_node_from_desc(self, var_desc): """ Create a variable node by using an existing VarDesc in the graph. Depend on the giving VarDesc, the created variable node may be persistable. Args: var_desc(core.VarDesc): the giving variable description. Returns: IrVarNode: the created variable node. """ return IrVarNode(self.graph.create_var_node(var_desc)) def create_op_node(self, op_type, attrs, inputs, outputs): """ Create a operator node in the graph. Args: op_type(str): the type of the operator node. attrs(dict): the attributes of the operator node. inputs(dict): the inputs of the operator node. outputs(dict): the outputs of the operator node. Returns: IrOpNode: the created operator node. """ op_desc = core.OpDesc() op_desc.set_type(op_type) for attr, value in attrs.items(): self._update_desc_attr(op_desc, attr, value) for input_name, var_nodes in inputs.items(): if not isinstance(var_nodes, list): var_nodes = [var_nodes] op_desc.set_input( input_name, [var_node.name() for var_node in var_nodes] ) for output_name, var_nodes in outputs.items(): if not isinstance(var_nodes, list): var_nodes = [var_nodes] op_desc.set_output( output_name, [var_node.name() for var_node in var_nodes] ) return IrOpNode(self.graph.create_op_node(op_desc)) def create_op_node_from_desc(self, op_desc): """ Create a operator node by using an existing OpDesc in the graph. Args: op_desc(core.VarDesc): the giving operator description. Returns: IrOpNode: the created operator node. """ return IrOpNode(self.graph.create_op_node(op_desc)) def update_input_link(self, old_input_node, new_input_node, op_node): """ Update the input's link of a operator node. Args: old_input_node(IrNode): the old input node of the giving op_node. new_input_node(IrNode): the new input node of the giving op_node. op_node(IrOpNode): the operator node that is needed to update input's link. """ assert ( old_input_node.node in self.graph.nodes() and new_input_node.node in self.graph.nodes() and op_node.node in self.graph.nodes() ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.' old_input_node.remove_output(op_node) op_node.remove_input(old_input_node) new_input_node.append_output(op_node) op_node.append_input(new_input_node) op_node.rename_input(old_input_node.name(), new_input_node.name()) def update_output_link(self, old_output_node, new_output_node, op_node): """ Update the output's link of an operator node. Args: old_output_node(IrNode): the old output node of the giving op_node. new_output_node(IrNode): the new output node of the giving op_node. op_node(IrOpNode): the operator node that is needed to update input's link. """ assert ( old_output_node.node in self.graph.nodes() and new_output_node.node in self.graph.nodes() and op_node.node in self.graph.nodes() ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.' old_output_node.remove_input(op_node) op_node.remove_output(old_output_node) new_output_node.append_input(op_node) op_node.append_output(new_output_node) op_node.rename_output(old_output_node.name(), new_output_node.name()) def link_to(self, node_in, node_out): """ Connect two nodes. Args: node_in(IrNode): the input node. node_out(IrNode): the output node. """ assert node_in.node in self.graph.nodes(), ( 'node_in(%s) must be in the graph nodes.' % node_in.node.name() ) assert node_out.node in self.graph.nodes(), ( 'node_out(%s) must be in the graph nodes.' % node_out.node.name() ) node_in.append_output(node_out) node_out.append_input(node_in) def safe_remove_nodes(self, remove_nodes): """ Remove nodes safely since links connected to these removed nodes are also removed. Args: remove_nodes(set): the nodes prepared to be removed. """ if not isinstance(remove_nodes, set): if isinstance(remove_nodes, Iterable): remove_nodes = set(remove_nodes) else: remove_nodes = {remove_nodes} original_nodes = {n.node for n in remove_nodes} core.graph_safe_remove_nodes(self.graph, original_nodes) def resolve_hazard(self): ordered_nodes = core.topology_sort(self.graph) var_nodes = dict() for node in ordered_nodes: if node.is_op() and node.op() is not None: for each_var_name in node.op().input_arg_names(): if each_var_name not in var_nodes: var_nodes[each_var_name] = [ self._find_node_by_name(node.inputs, each_var_name) ] for each_var_name in node.op().output_arg_names(): if each_var_name not in var_nodes: var_nodes[each_var_name] = [ self._find_node_by_name(node.outputs, each_var_name) ] else: var_nodes[each_var_name].append( self._find_node_by_name(node.outputs, each_var_name) ) self.graph.resolve_hazard(var_nodes) def has_circle(self): """ Check if the graph has a circle. Returns: bool: True if the graph has a circle else False. """ return core.has_circle(self.graph) def graph_num(self): """ Count the number of unconnected graphs in this graph. Returns: int: the number of unconnected graphs. """ return core.graph_num(self.graph) def topology_sort(self): """ Perform the topology sort operation on the graph. Notes: the `graph` can not contain a circle. Returns: list(IrNode): nodes in topology order. """ ordered_nodes = core.topology_sort(self.graph) return [IrNode(n) for n in ordered_nodes] def build_adjacency_list(self): """ Build an adjacency list of operations for the `graph`. Returns: dict{IrNode: set(IrNode)}: the adjacency list. """ adj_list = core.build_adjacency_list(self.graph) wrapped_adj_list = dict() for k, v in adj_list.items(): wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v} return wrapped_adj_list def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True): """ Draw the graph. If `dot` command is installed, the drawn graph will be saved as pdf file type, otherwise dot file type is used. Args: save_path(str): the save path of drawn graph. name(str): the name of drawn graph. marked_nodes(set(IrNode)): nodes that are needed to be marked. Default value is None. remove_ctr_var(bool): If it is set True, all control variable nodes in the graph will be removed. Default value is True. """ def _convert_to_pdf(dot_file_path): pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf' exited_code = subprocess.call( 'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path, shell=True, ) if exited_code != 0: print('The dot command is needed for creating pdf files.') print( 'The {} is saved as the dot filetype.'.format(dot_file_path) ) remove_ctr_vars = set() if remove_ctr_var: for node in self.all_var_nodes(): if node.is_ctrl_var(): remove_ctr_vars.add(node) self.safe_remove_nodes(remove_ctr_vars) print('Total ops num = {}.'.format(len(self.all_op_nodes()))) if marked_nodes is not None: if not isinstance(marked_nodes, set): if isinstance(marked_nodes, Iterable): marked_nodes = set(marked_nodes) else: marked_nodes = {marked_nodes} marked_nodes = {n.node for n in marked_nodes} remove_ctr_vars = {n.node for n in remove_ctr_vars} marked_nodes = marked_nodes - remove_ctr_vars if self.graph.has('__graphviz__marked_node__'): self.graph.erase('__graphviz__marked_node__') self.graph.set('__graphviz__marked_node__', marked_nodes) if not os.path.exists(save_path): os.makedirs(save_path) viz_dot_path = os.path.join(save_path, name) + '.dot' viz_pass = core.get_pass('graph_viz_pass') viz_pass.set('graph_viz_path', viz_dot_path) viz_pass.apply(self.graph) _convert_to_pdf(viz_dot_path) def to_program(self): """ Convert the graph into a Program. WARN: When the graph includes backward operator nodes, the conversion process may be failed. Usually, this function is only used to convert a test graph. Returns: Program: a program converted from the graph. """ convert_pass = core.get_pass('graph_to_program_pass') desc = core.ProgramDesc() convert_pass.set_not_owned('program', desc) convert_pass.apply(self.graph) program = Program._construct_from_desc(desc) return program def _find_node_by_name(self, nodes, node_name): """ Find a node in the giving nodes set by the name. """ target_node = None for n in nodes: if n.name() == node_name: target_node = n assert target_node is not None, ( "Cannot find the target node (%s)in the giving set." % node_name ) return target_node def _update_desc_attr(self, desc, name, val): """ Update the value of desc's attribute by attribute's name. """ if isinstance(val, Variable): desc.set_var_attr(name, val.desc) elif isinstance(val, list) and _all_is_type(val, Variable): desc.set_vars_attr(name, [v.desc for v in val]) elif isinstance(val, Block): desc.set_block_attr(name, val.desc) elif isinstance(val, list) and val and _all_is_type(val, Block): desc.set_blocks_attr(name, [v.desc for v in val]) elif isinstance(val, core.BlockDesc) or isinstance( val, core.ProgramDesc ): desc.set_serialized_attr(name, val.serialize_to_string()) else: desc._set_attr(name, val) class Program: """ Create Python Program. It has at least one :ref:`api_guide_Block_en`, when the control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included, it will contain nested block. Please reference the `framework.proto `_ for details. A set of Program usually contains startup program and main program. A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main program will contain the network structure and vars for train. A set of Program can be used for test or train, in train program , Paddle will contain all content to build a train network, in test program Paddle will prune some content which is irrelevant to test, eg. backward ops and vars. **Notes**: **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program` **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,** :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.** Returns: Program: An empty Program. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() main_program = static.Program() startup_program = static.Program() with static.program_guard(main_program=main_program, startup_program=startup_program): x = static.data(name="x", shape=[-1, 784], dtype='float32') y = static.data(name="y", shape=[-1, 1], dtype='int32') z = static.nn.fc(name="fc", x=x, size=10, activation="relu") print("main program is: {}".format(main_program)) print("start up program is: {}".format(startup_program)) """ def __init__(self): self.desc = core.ProgramDesc() self.blocks = [Block(self, 0)] self.current_block_idx = 0 global global_prog_seed self._seed = global_prog_seed self._current_role = core.op_proto_and_checker_maker.OpRole.Forward self.__op_role_var = [] # for distribute training # _is_distributed = True if under distributed training self._is_distributed = False # _is_chief = True if the trainer is the first one, usually No.0 self._is_chief = False # _parameters_on_pservers records all the parameters distributed on parameter servers. self._parameters_on_pservers = None # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"] self._endpoints = [] # if current role is parameter server, the _ps_endpoint is its "ip:port" self._ps_endpoint = None # trainers_endpoints, it is used for distribution. self._trainers_endpoints = [] # the distributed lookup table names self._distributed_lookup_table = None # use Deep gradient comrepssion or not self._enable_dgc = False self._use_lamb = False self._nccl_comm_num = 1 self._use_hierarchical_allreduce = False self._hierarchical_allreduce_inter_nranks = 0 # if this program has been optimized by distributed optimizer # fleet_opt will be given a value self._fleet_opt = None self._program_config = None # assigned if this program has been parsed by a pipeline optimizer self._pipeline_opt = None # assigned if this program has been parsed by a heter pipeline parameter server optimizer self._heter_pipeline_opt = None # appending gradients times self._appending_grad_times = 0 # identifier for auto checkpoint self._auto_checkpoint_name = unique_name.generate( "__auto_checkpoint_program__" ) # compiled program, i.e. Graph self._graph = None # to tag whether is startup_program self._is_start_up_program_ = False def _find_var_class_kwargs(self, new_desc): # NOTE: not all variables support shape/dtype/lod_level methods. # For example: RAW, STEP_SCOPES, etc. def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types): if var_desc.type() in allowed_types: return getattr(var_desc, attr_name)() else: return None old_desc = self.desc all_new_vars = [] block_num = new_desc.num_blocks() for idx in range(block_num): if idx > (len(self.blocks) - 1): self._create_block() new_block_desc = new_desc.block(idx) all_new_vars.append([]) block_new_vars = all_new_vars[-1] for new_var_desc in new_block_desc.all_vars(): if self.blocks[idx].has_var(new_var_desc.name()): old_var = self.blocks[idx].var(new_var_desc.name()) else: old_var = None kwargs = { 'type': new_var_desc.type(), 'name': new_var_desc.name(), 'shape': get_var_desc_attr_or_none( new_var_desc, "shape", [ core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS, core.VarDesc.VarType.LOD_TENSOR_ARRAY, ], ), 'dtype': get_var_desc_attr_or_none( new_var_desc, "dtype", [ core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS, core.VarDesc.VarType.LOD_TENSOR_ARRAY, ], ), 'lod_level': get_var_desc_attr_or_none( new_var_desc, "lod_level", [ core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.LOD_TENSOR_ARRAY, ], ), 'error_clip': old_var.error_clip if old_var is not None else None, 'stop_gradient': old_var.stop_gradient if old_var is not None else False, 'is_data': old_var.is_data if old_var is not None else False, 'need_check_feed': new_var_desc.need_check_feed(), 'belong_to_optimizer': old_var.belong_to_optimizer if old_var is not None else False, } if isinstance(old_var, Parameter): kwargs.update( { 'trainable': old_var.trainable, 'optimize_attr': old_var.optimize_attr, 'regularizer': old_var.regularizer, 'do_model_average': old_var.do_model_average, 'need_clip': old_var.need_clip, 'is_distributed': old_var.is_distributed, 'is_parameter': old_var.is_parameter, } ) block_new_vars.append( { 'class': Parameter, 'kwargs': copy.deepcopy(kwargs), } ) else: kwargs['persistable'] = new_var_desc.persistable() block_new_vars.append( { 'class': Variable, 'kwargs': copy.deepcopy(kwargs), } ) return all_new_vars def _rebuild_from_desc(self, desc): all_new_vars = self._find_var_class_kwargs(desc) block_num = desc.num_blocks() assert block_num == len(all_new_vars) assert block_num == self.desc.num_blocks() # clear old blocks and desc for idx in range(block_num): block = self.blocks[idx] block.vars.clear() block.ops.clear() for idx in range(block_num): block_desc = self.blocks[idx].desc new_block_desc = desc.block(idx) block_desc._move_from(new_block_desc) del desc # add new vars first for idx in range(block_num): block = self.blocks[idx] for new_var in all_new_vars[idx]: clazz = new_var['class'] kwargs = new_var['kwargs'] kwargs['block'] = block clazz(**kwargs) # then append op for idx in range(block_num): block = self.blocks[idx] block_desc = self.desc.block(idx) for op_idx in range(block_desc.op_size()): op_desc = block_desc.op(op_idx) op = Operator(block=block, desc=op_desc) block.ops.append(op) def global_seed(self, seed=0): """ Set global seed for Program Returns: None. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() prog = static.default_main_program() print(prog.random_seed) ## 0 ## the default random seed is 0 prog.global_seed(102) prog1 = static.default_main_program() print(prog1.random_seed) ## 102 ## the random seed is 102 """ global global_prog_seed global_prog_seed = seed self._seed = global_prog_seed @property def _op_role(self): """ The operator role. In a enum {Forward, Backward, Optimize}. Notes: this is a low level API. It is used only for ParallelExecutor to duplicate or schedule operator to devices. For example, the forward operator should be executed on every device. The backward operator should be executed on every device and the parameter gradient of backward (use :code:`_op_role_var` to get this variable) operator should be merged to one device. The optimization operators should be executed on only one device and broadcast the optimization result, i.e., the new parameter, to every other device. """ return self._current_role @_op_role.setter def _op_role(self, role): self._current_role = role @property def _op_role_var(self): """ The auxiliary variables for :code:`_op_role` property. See Also: :code:`Program._op_role`'s documentation for details. Notes: This is a very low-level API. Users should not use it directly. """ return self.__op_role_var @signature_safe_contextmanager def _backward_role_guard(self): tmp_role = self._current_role OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.Backward try: yield finally: self._current_role = tmp_role @signature_safe_contextmanager def _optimized_guard(self, param_and_grads): """ A with guard to set :code:`Optimization` :code:`OpRole` and :code:`OpRoleVar` automatically. Notes: This is a very low level API. Users should not use it directly. Args: param_and_grads(list): The variables (names) to be optimized. Examples: >>> import paddle.fluid as fluid >>> p, g = backward(...) >>> with program._optimized_guard([p,g]): >>> p = p - 0.001 * g """ tmp_role = self._current_role tmp_var = self.__op_role_var OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.Optimize self.__op_role_var = [ var.name if isinstance(var, Variable) else var for var in param_and_grads ] try: yield finally: self.__op_role_var = tmp_var self._current_role = tmp_role @signature_safe_contextmanager def _lr_schedule_guard(self, is_with_opt=False): """ A with guard to set :code:`LRSched` :code:`OpRole` and :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is set to the target learning rate. Notes: This is a very low level API. Users should not use it directly. Args: is_with_opt: Only set to true if these ops a in the middle of a bunch of optimize ops so that it can be treated correctly. For example, sgd->lr_op->sgd->lr_op->sgd. Examples: >>> import paddle.fluid as fluid >>> p, g = backward(...) >>> with program.lr_schedule_guard(): >>> lr = lr * decay """ tmp_role = self._current_role tmp_var = self.__op_role_var OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.LRSched if is_with_opt: self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize) # TODO(typhoonzero): how to set target learning rate var self.__op_role_var = [] try: yield finally: self.__op_role_var = tmp_var self._current_role = tmp_role def __str__(self): """ Get the protobuf debug string of this Program. Returns: (str): The protobuf debug string. Raises: ValueError: If any of required fields is not set. """ return self._to_readable_code() def _to_readable_code(self, skip_op_callstack=True): """ Get readable debug string of Program. .. note:: If you want to get the debug string in protobuf format, please use :code:`to_string` method. Args: skip_op_callstack(bool): whether to skip parsing Operator's attribute op_callstack, default value is True Returns: string: The formatted Program string. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() cur_program = static.Program() cur_block = cur_program.current_block() new_var = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') new_op = cur_block.append_op(type="abs", inputs={"X": [new_var]}, outputs={"Out": [new_var]}) print(cur_program._to_readable_code()) """ assert isinstance( skip_op_callstack, bool ), "skip_op_callstack parameter's type is error, expect bool, received {}".format( type(skip_op_callstack) ) program_str = "" for block in self.blocks: program_str += block._to_readable_code(skip_op_callstack) program_str += '\n' return program_str def to_string(self, throw_on_error, with_details=False): """ To debug string. Args: throw_on_error (bool): raise Value error when any of required fields is not set. with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print. Returns: str: The debug string describe current Program. Raises: ValueError: If any of required fields is not set and throw_on_error is True. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() prog = static.default_main_program() x = static.data(name="X", shape=[2,3], dtype="float32") pred = static.nn.fc(x, size=3) prog_string = prog.to_string(throw_on_error=True, with_details=False) prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True) print("program string without detail: {}".format(prog_string)) print("program string with detail: {}".format(prog_string_with_details)) """ assert isinstance( throw_on_error, bool ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format( type(throw_on_error) ) assert isinstance( with_details, bool ), "The type of with_details parameter is wrong, expected bool, but received {}.".format( type(with_details) ) if with_details: res_str = "" for block in self.blocks: res_str += block.to_string(throw_on_error, with_details) else: protostr = self.desc.serialize_to_string() proto = framework_pb2.ProgramDesc.FromString(bytes(protostr)) res_str = _debug_string_(proto, throw_on_error) return res_str def _get_desc(self): """ Get the C++ side of `ProgramDesc` object pointer. The C++ object is exposed by :code:`pybind`. Notes: This is a very low level API. Users should not use this API directly. """ return self.desc def _version(self): return self.desc._version() def clone(self, for_test=False): """ .. note::: 1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 3. This API has no effect in Dygraph Mode. Create a new Program with forward content of original one when ``for_test=True``. Create a new Program as same as the original one when ``for_test=False``. Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between training and testing. They have an attribute, :code:`is_test`, to control this behaviour. This method will change the :code:`is_test` attribute of them to :code:`True` when :code:`for_test=True`. * Set for_test to False when you want to clone the program for training. * Set for_test to True when you want to clone the program for testing. We will prune the backward and optimize part of the program when you use :code:`clone` after :code:`Opimizer.minimize`, but we still recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. For Example: :: import paddle import paddle.static as static paddle.enable_static() img = static.data(name='image', shape=[None, 784]) pred = static.nn.fc(x=img, size=10, actvation='relu') loss = paddle.mean(pred) # Here we use clone before Momentum test_program = static.default_main_program().clone(for_test=True) optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9) optimizer.minimize(loss) Args: for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True` and prune the backward and optimize part of the program. The default value is :code:`False` . Returns: Program: A new Program with forward content of original one when ``for_test=True``. A new Program as same as the original one when ``for_test=False`` Examples: .. note:: The Program's order maybe different after :code:`clone` and this will not affect your training or testing progress. In the following example we give you an simple method :code:`print_prog(program)` to print Program Descs inorder to make sure you have same print result after :code:`clone`: .. code-block:: python import paddle def print_prog(prog): for name, value in sorted(prog.block(0).vars.items()): print(value) for op in prog.block(0).ops: print("op type is {}".format(op.type)) print("op inputs are {}".format(op.input_arg_names)) print("op outputs are {}".format(op.output_arg_names)) for key, value in sorted(op.all_attrs().items()): if key not in ['op_callstack', 'op_role_var']: print(" [ attrs: {}: {} ]".format(key, value)) 1. To clone a test program, the sample code is: .. code-block:: python import paddle import paddle.static as static import paddle.utils as utils import paddle.nn.functional as F paddle.enable_static() def print_prog(prog): for name, value in sorted(prog.block(0).vars.items()): print(value) for op in prog.block(0).ops: print("op type is {}".format(op.type)) print("op inputs are {}".format(op.input_arg_names)) print("op outputs are {}".format(op.output_arg_names)) for key, value in sorted(op.all_attrs().items()): if key not in ['op_callstack', 'op_role_var']: print(" [ attrs: {}: {} ]".format(key, value)) train_program = static.Program() startup_program = static.Program() # startup_program is used to do some parameter init work, # and main program is used to hold the network with static.program_guard(train_program, startup_program): with utils.unique_name.guard(): img = static.data(name='image', shape=[None, 784]) hidden = static.nn.fc(x=img, size=200, activation='relu') hidden = F.dropout(hidden, p=0.5) loss = F.cross_entropy( input=static.nn.fc(x=hidden, size=10, activation='softmax'), label=static.data(name='label', shape=[1], dtype='int64')) avg_loss = paddle.mean(loss) test_program = train_program.clone(for_test=True) print_prog(test_program) # Due to parameter sharing usage for train and test, so we need to use startup program of train # instead of using test startup program, while nothing is in test's startup program # In Paddle we will share weights by using the same Tensor name. In train and test program # all parameters will have the same name and this can make train and test program sharing parameters, # that's why we need to use startup program of train. And for startup program of test, it has nothing, # since it is a new program. with static.program_guard(train_program, startup_program): with utils.unique_name.guard(): sgd = paddle.optimizer.SGD(learning_rate=1e-3) sgd.minimize(avg_loss) 2. The clone method can be avoid if you create program for training and program for testing individually. .. code-block:: python import paddle import paddle.static as static import paddle.utils as utils import paddle.nn.functional as F paddle.enable_static() def print_prog(prog): for name, value in sorted(prog.block(0).vars.items()): print(value) for op in prog.block(0).ops: print("op type is {}".format(op.type)) print("op inputs are {}".format(op.input_arg_names)) print("op outputs are {}".format(op.output_arg_names)) for key, value in sorted(op.all_attrs().items()): if key not in ['op_callstack', 'op_role_var']: print(" [ attrs: {}: {} ]".format(key, value)) def network(): img = static.data(name='image', shape=[None, 784]) hidden = static.nn.fc(x=img, size=200, activation='relu') hidden = F.dropout(hidden, p=0.5) loss = F.cross_entropy( input=static.nn.fc(x=hidden, size=10, activation='softmax'), label=static.data(name='label', shape=[1], dtype='int64')) avg_loss = paddle.mean(loss) return avg_loss train_program_2 = static.Program() startup_program_2 = static.Program() test_program_2 = static.Program() with static.program_guard(train_program_2, startup_program_2): with utils.unique_name.guard(): avg_loss = network() sgd = paddle.optimizer.SGD(learning_rate=1e-3) sgd.minimize(avg_loss) # the test startup program is not used. with static.program_guard(test_program_2, startup_program_2): with utils.unique_name.guard(): avg_loss = network() print_prog(test_program_2) The two code snippets above will generate and print same programs. """ # NOTE(zhiqiu): we sync the original program first, since its program may diff with # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc. self._sync_with_cpp() pruned_origin_block_id_map = None if for_test: forward_prog = Program() forward_prog.desc, pruned_origin_block_id_map = core.prune_backward( self.desc ) forward_prog.blocks = [ Block(forward_prog, i) for i in range(forward_prog.desc.num_blocks()) ] forward_prog._sync_with_cpp() p = forward_prog._inference_optimize(prune_read_op=False) else: p = Program() p.current_block_idx = self.current_block_idx p._seed = self._seed p.desc = core.ProgramDesc(self.desc) p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())] p._current_role = self._current_role p.__op_role_var = self.__op_role_var p._appending_grad_times = self._appending_grad_times if hasattr(self, 'lr_sheduler'): p.lr_sheduler = self.lr_sheduler # NOTE(zhiqiu): we sync the cloned program, to update its program by # its desc. p._sync_with_cpp() p._copy_param_info_from(self) p._copy_data_info_from(self, pruned_origin_block_id_map) p._copy_dist_param_info_from(self) return p def _prune(self, targets): """ Prune operators and variables which are not needed to generate :code:`targets`. Notes: This is a very low level API. Users should not use this API directly. This API is in flux and not stable. Args: targets(list|Variable|Operator): A list of variables, operators, or variable names need to be pruned Returns: Program: A new, pruned program. """ return self._prune_with_input([], targets) def _prune_with_input(self, feeded_var_names, targets): """ Prune operators and variables which are not needed to generate :code:`targets`. Prune operators and variables which are needed to generate feeded_var Notes: This is a very low level API. Users should not use this API directly. This API is in flux and not stable. Args: feeded_var_names(list|str): A list of variable names from where pruning start. If it is set as [], this API works just like _prune() targets(list|Variable|Operator): A list of variables, operators, or variable names need to be pruned Returns: Program: A new, pruned program. """ # NOTE(zhiqiu): we sync the original program first, since its program may diff with # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc. self._sync_with_cpp() if not isinstance(feeded_var_names, list): feeded_var_names = [feeded_var_names] if not isinstance(targets, list): targets = [targets] for var in feeded_var_names: if not isinstance(var, str): raise ValueError( "All feeded_var_names of Program._prune_with_input() can only be " "str, but received %s." % type(var) ) # find out all variables that can be generated or updated with given feed generatable_vars = set() for idx, op in enumerate(self.global_block().ops): runnable_op = True for name in op.input_arg_names: if not self.global_block().has_var(name): continue if self.global_block().var(name).persistable: continue if name not in generatable_vars.union(feeded_var_names): runnable_op = False break if runnable_op: generatable_vars = generatable_vars.union(op.output_arg_names) targets_idx = [] for t in targets: if not isinstance(t, Operator): if isinstance(t, Variable): name = t.name elif isinstance(t, str): name = str(t) else: raise ValueError( "All targets of Program._prune_with_input() can only be " "Variable or Operator, but received %s." % type(t) ) # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases: # (1) the variable is leaf, it has no op that generates it; # (2) the variable is not leaf, and we need to prune the op that generates it. # In both cases, wo can just skip target_op of that it. if name in feeded_var_names: # however if the var is also updated by a runnable op, will shall keep it if name not in generatable_vars: continue # After transpiler processing, the op that output this # variable maybe has been changed, so t.op is not reliable # and we need to find the current op that generate this # variable here. target_op = None global_block = self.global_block() for idx, op in enumerate(global_block.ops): if name in op.output_arg_names: # NOTE(zhiqiu): Find op that generate target name. # Skip optimize op except for optimize op in targets, # since optimize op generates parameters. if op._is_optimize_op() and op not in targets: continue else: target_op = op if target_op is not None: targets_idx.append([target_op.block.idx, target_op.idx]) else: targets_idx.append([t.block.idx, t.idx]) res = Program() res.desc, pruned_origin_block_id_map = core.prune( self.desc, set(feeded_var_names), targets_idx ) res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())] res._sync_with_cpp() res._copy_param_info_from(self) res._copy_data_info_from(self, pruned_origin_block_id_map) res._copy_dist_param_info_from(self) return res def _inference_optimize(self, prune_read_op=True): """ This method will create a new program and do following adjustments on it: 1. Remove all reader variables and their creator ops if exist. 2. Remove the :code:`read_op` if exists. 3. change the :code:`is_test` attribute of operators to :code:`True`. All the :code:`Parameter` information will be lost. Args: prune_read_op(bool): remove the read ops that are added by py_reader for cpp inference library Notes: This API is a very low level API. Use :code:`Program.clone(for_test=True)` instead. Returns: Program: The new program. """ res = Program() res.desc = core.ProgramDesc(self.desc) # remove all readers and the read_op if exist read_op_idx = 0 root_block = res.desc.block(0) if prune_read_op: while True: if ( read_op_idx >= root_block.op_size() or root_block.op(read_op_idx).type() == 'read' ): break read_op_idx += 1 if read_op_idx < root_block.op_size(): root_block._remove_op(0, read_op_idx + 1) for var in root_block.all_vars(): if var.type() == core.VarDesc.VarType.READER: root_block._remove_var(var.name().encode()) # change all `is_test` attributes to True for i in range(res.desc.num_blocks()): block = res.desc.block(i) for j in range(block.op_size()): op = block.op(j) if op.has_attr('is_test'): op._set_bool_attr('is_test', True) if op.type() == "batch_norm": # Remove the output ReserveSpace of batch_norm if exists. op.remove_output("ReserveSpace") res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())] res._sync_with_cpp() return res def _remove_training_info(self, clip_extra=True): """ This method will create a new program and do following adjustments on it: 1. Remove all variable's `is_parameter` attribute if exist. 2. Remove all variable's `stop_gradient` attribute if exist. Notes: This API is a very low level API. Returns: Program: The new program. """ res = Program() res.desc = core.ProgramDesc(self.desc) res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())] res._sync_with_cpp() # Note: The op_role and op_role_var cann't be deleted currently, # and we will try to remove them in the future. common_clipped_attrs_list = ['op_callstack', 'with_quant_attr'] for i in range(res.desc.num_blocks()): block = res.desc.block(i) for var in block.all_vars(): var.clear_is_parameter() var.clear_stop_gradient() if not clip_extra: continue for op_idx in range(0, block.op_size()): op = block.op(op_idx) if op.type() not in OpProtoHolder.instance().op_proto_map: continue extra_attrs_map = core.get_op_extra_attrs(op.type()) proto = OpProtoHolder.instance().get_op_proto(op.type()) remove_input_list = [] for name in op.input_names(): find = False for input_proto in proto.inputs: if input_proto.name != name: continue if input_proto.extra: remove_input_list.append(name) find = True break if not find: remove_input_list.append(name) # The extra input of op will be removed in the future # for name in remove_input_list: # op.remove_input(name) remove_output_list = [] for name in op.output_names(): find = False for output_proto in proto.outputs: if output_proto.name != name: continue if output_proto.extra: remove_output_list.append(name) find = True break if not find: remove_output_list.append(name) # The extra output of op will be removed in the future for name in remove_output_list: op.remove_output(name) op_quant_name = ( core.op_proto_and_checker_maker.kOpWithQuantAttrName() ) quant = ( bool(op.attr(op_quant_name)) if op_quant_name in op.attr_names() else False ) quant_attrs = [ op_quant_name, "quantization_type", "skip_quant", "activation_bits", "bit_length", "quantize_weight_bits", "weight_quant_scale", ] for extra_attr_name in extra_attrs_map.keys(): op.remove_attr(extra_attr_name) remove_attr_list = [] for name in op.attr_names(): if quant: if name in quant_attrs: continue if name.endswith("_threshold"): continue if len(extra_attrs_map) > 0: if name in common_clipped_attrs_list: op.remove_attr(name) continue find = False for attr_proto in proto.attrs: if attr_proto.name != name: continue find = True break if not find: remove_attr_list.append(name) for name in remove_attr_list: op.remove_attr(name) return res @staticmethod def parse_from_string(binary_str): """ .. note:: 1. All information about parameters will be lost after serialization; 2. This API has no effect in Dygraph mode. Deserialize a Program from `protobuf `_ binary string. This method always use to save and load model Args: binary_str_type (str): the binary prootbuf string. Returns: Program: A deserialized Program. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() startup_prog = static.Program() main_prog = static.Program() with static.program_guard(startup_prog, main_prog): x = static.data(name='X', shape=[1000, 784], dtype='float32') y = static.data(name='Y', shape=[784, 100], dtype='float32') z = paddle.matmul(x=x, y=y) binary_str = static.default_main_program().desc.serialize_to_string() prog_restored = static.default_main_program().parse_from_string(binary_str) print(static.default_main_program()) print(prog_restored) """ p = Program() p.desc = core.ProgramDesc(binary_str) p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())] p._sync_with_cpp() return p @staticmethod def _construct_from_desc(desc): """ Construct a program from program desc. Args: desc(core.ProgramDesc): The program desc for constructing. Returns: Program: A program. """ p = Program() p.desc = desc p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())] p._sync_with_cpp() return p @property def random_seed(self): """ The default random seed for random operators in Program. ``0`` means get the random seed from random device. .. note:: It must be set before the operators have been added. Returns: int64: Random seed in current Program Examples: .. code-block:: python import paddle import paddle.static as static import paddle.nn.functional as F paddle.enable_static() prog = static.default_main_program() random_seed = prog.random_seed x_var = static.data(name="X", shape=[3,3], dtype="float32") print(random_seed) ## 0 ## the default random seed is 0 # Here we need to set random seed before we use paddle.nn.functional.dropout prog.random_seed = 1 z_var = F.dropout(x_var, 0.7) print(prog.random_seed) ## 1 ## the random seed is change to 1 """ return self._seed @property def num_blocks(self): """ The number of :ref:`api_guide_Block_en` in this Program. .. note:: This API has no effect in Dygraph mode. Returns: int(Platform-dependent size): num of :ref:`api_guide_Block_en` in current Program Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() prog = static.default_main_program() num_blocks = prog.num_blocks print(num_blocks) # print result: # 1 """ return self.desc.num_blocks() @random_seed.setter def random_seed(self, seed): if not isinstance(seed, int): raise ValueError( "Program.random_seed's input seed must be an integer, but received %s." % type(seed) ) self._seed = seed def __repr__(self): return self.__str__() def global_block(self): """ .. note:: This API has no effect in Dygraph mode. Get the first :ref:`api_guide_Block_en` of this Program. Returns: :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en` of this Program. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() prog = static.default_main_program() gb_block = prog.global_block() print(gb_block) """ return self.blocks[0] def block(self, index): """ .. note:: This API has no effect in Dygraph mode. Get the :code:`index` :ref:`api_guide_Block_en` of this Program Args: index (int) - The index of :ref:`api_guide_Block_en` to get Returns: :ref:`api_guide_Block_en`: The :code:`index` block Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() prog = static.default_main_program() block_0 = prog.block(0) print(block_0) """ return self.blocks[index] def current_block(self): """ .. note:: This API has no effect in Dygraph mode. Get the current :ref:`api_guide_Block_en` . The :code:`current` :ref:`api_guide_Block_en` is the :ref:`api_guide_Block_en` to append operators. Returns: :ref:`api_guide_Block_en`: The :code:`index` :ref:`api_guide_Block_en` Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() prog = static.default_main_program() current_blk = prog.current_block() print(current_blk) """ return self.blocks[self.current_block_idx] def _create_block(self, parent_idx=None): """ Create a new block with the :code:`parent_idx` and change the current block to new block. Args: parent_idx(int): The parent block index. Returns: Block: The new block. """ new_block_idx = len(self.blocks) parent = ( self.current_block() if parent_idx is None else self.block(parent_idx) ) self.desc.append_block(parent.desc) self.current_block_idx = new_block_idx self.blocks.append(Block(self, self.current_block_idx)) return self.current_block() def _rollback(self): """ Exit a code block, i.e., roll back to the parent block. Returns: None """ self.current_block_idx = self.current_block().parent_idx def _sync_with_cpp(self): """ Synchronize Python instance to its binding C++ object instance. If the program is modified in C++ space, this method should be invoked. Notes: This is a very low level API. Users should not invoke it directly. Returns: None """ for block_idx in range(len(self.blocks), self.desc.num_blocks()): self.blocks.append(Block(self, block_idx)) for block in self.blocks: block._sync_with_cpp() def _copy_param_info_from(self, other): """ Copy the information of parameters from other program. Notes: This is a very low level API. Users should not invoke it directly. Args: other(Program): Other program Returns: None """ if not isinstance(other, Program): raise TypeError( "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s" % type(other) ) self.global_block()._copy_param_info_from(other.global_block()) def _copy_dist_param_info_from(self, other): """ Copy the information of distributed information from other program. Args: other(Program): Other program Returns: None """ if not isinstance(other, Program): raise TypeError( "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s" % type(other) ) self._is_distributed = other._is_distributed self._is_chief = other._is_chief self._parameters_on_pservers = other._parameters_on_pservers self._endpoints = other._endpoints self._ps_endpoint = other._ps_endpoint self._distributed_lookup_table = other._distributed_lookup_table def _copy_data_info_from(self, other, pruned_origin_block_id_map=None): """ Copy the information of data variables from other program. Notes: This is a very low level API. Users should not invoke it directly. Args: other(Program): Other program pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is cloned from block 0 in other, etc. Default is None, which means default mapped, {0:0, 1:1,..., n:n}. Returns: None """ if not isinstance(other, Program): raise TypeError( "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s" % type(other) ) if not pruned_origin_block_id_map: pruned_origin_block_id_map = { i: i for i in range(self.desc.num_blocks()) } # NOTE(zhiqiu): All vars in cloned program exist in original program. # The reverse is not true, due to backward pruning. for i, block in enumerate(self.blocks): other_block = other.blocks[pruned_origin_block_id_map[i]] for var in list(block.vars.values()): other_var = other_block.var(var.name) if other_var.is_data: var.is_data = True if other_var.desc.need_check_feed(): var.desc.set_need_check_feed(True) if other_var.stop_gradient: var.stop_gradient = True def list_vars(self): """ Get all Tensors from this Program. A iterable object is returned. Returns: iterable Tensors: The Generator will yield every Tensor in this program. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() prog = static.default_main_program() img = static.data(name='img', shape=[None, 1,28,28], dtype='float32') label = static.data(name='label', shape=[None,1], dtype='int64') for var in prog.list_vars(): print(var) # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True) # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True) """ for each_block in self.blocks: for each_var in list(each_block.vars.values()): yield each_var def all_parameters(self): """ Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned. Returns: list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() program = static.default_main_program() data = static.data(name='x', shape=[None, 13], dtype='float32') hidden = static.nn.fc(x=data, size=10) loss = paddle.mean(hidden) paddle.optimizer.SGD(learning_rate=0.01).minimize(loss) for param in program.all_parameters(): print(param) # Here will print all parameters in current program, in this example, # the result is like: # # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False) # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False) # # Here print(param) will print out all the properties of a parameter, # including name, type and persistable, you can access to specific # property of a parameter, such as param.name, param.type """ parameters = [] for each_block in self.blocks: parameters.extend(each_block.all_parameters()) return parameters def state_dict(self, mode='all', scope=None): """ Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer. The value is the tensor of this variable in the given scope. .. note:: This function MUST called after run start_up_program Args: mode(str, optional): Source of the obtained parameters and buffers. 'opt' : The return value only contains the variable in the optimizer. 'param' : The return value only contains the variable in the network, not the variable in the optimizer. 'all' : The return value contains the variable in the network and optimizer. Default: 'all' scope(Scope, optional) : If scope is None, state_dict will be set to global scope obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope. Default: None Retruns: dict: a dict contains the parameters and persistable buffers. Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() x = static.data(name="x", shape=[10, 10], dtype='float32') y = static.nn.fc(x, 10) z = static.nn.fc(y, 10) place = paddle.CPUPlace() exe = static.Executor(place) exe.run(static.default_startup_program()) prog = static.default_main_program() path = "./temp/model.pdparams" paddle.save(prog.state_dict(), path) """ # The 'framework' is a low-level module, and 'executor' # can not be imported at the begainning of this file. # Therefore, the above two modules are dynamically imported. from .executor import global_scope if scope is not None and not isinstance(scope, core._Scope): raise TypeError( "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format( type(scope) ) ) if scope is None: scope = global_scope() if not isinstance(mode, str): raise TypeError( "Type of `mode` should be string, but received {}.".format( type(mode) ) ) def is_parameter(var): return isinstance(var, Parameter) def is_persistable(var): if ( var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or var.desc.type() == core.VarDesc.VarType.FETCH_LIST or var.desc.type() == core.VarDesc.VarType.READER ): return False return var.persistable def is_belong_to_optimizer(var): if not (isinstance(var, Parameter) or var.desc.need_check_feed()): return is_persistable(var) return False def condition(var): if mode == 'param': return is_parameter(var) elif mode == 'opt': return is_belong_to_optimizer(var) elif mode == 'all': return is_parameter(var) or is_belong_to_optimizer(var) else: raise ValueError( "`mode` string should be 'param', 'opt' or 'all', but received {}.".format( mode ) ) var_list = filter(condition, self.list_vars()) state_dict = dict() for var in var_list: var_temp = scope.find_var(var.name) if var_temp is None: raise ValueError( "Can not find Variable '{}' in the scope. Make sure it is initialized".format( var.name ) ) state_dict[var.name] = var_temp.get_tensor() return state_dict def set_state_dict(self, state_dict, scope=None): """ Set parameters and persistable buffers in state_dict to program. An exception will throw if shape or dtype of the parameters is not match. .. note:: This function MUST called after run start_up_program Args: state_dict(dict): the dict store parameters and persistable buffers. The key is the name of the parameter or the name of the buffer. The value is the tensor of this variable in the given scope. scope(Scope, optional) : If scope is None, state_dict will be set to global scope obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope. Default: None Returns: None Examples: .. code-block:: python import paddle import paddle.static as static paddle.enable_static() x = static.data(name="x", shape=[10, 10], dtype='float32') y = static.nn.fc(x, 10) z = static.nn.fc(y, 10) place = paddle.CPUPlace() exe = static.Executor(place) exe.run(static.default_startup_program()) prog = static.default_main_program() path = "./temp/model.pdparams" paddle.save(prog.state_dict(), path) state_dict_load = paddle.load(path) prog.set_state_dict(state_dict_load) """ if not isinstance(state_dict, dict): raise TypeError( "Type of `state_dict` should be dict, but received {}.".format( type(state_dict) ) ) vars_dict = {var.name: var for var in self.list_vars()} condition = ( True if 'StructuredToParameterName@@' in state_dict else False ) for name, value in state_dict.items(): if condition: if name == "StructuredToParameterName@@": continue if name in state_dict['StructuredToParameterName@@']: name = state_dict['StructuredToParameterName@@'][name] if name in vars_dict: try: vars_dict[name].set_value(value, scope) except ValueError as err: warnings.warn( ("Skip loading for '{}'. ".format(name) + str(err)) ) except TypeError as err: warnings.warn( ("Skip loading for '{}'. ".format(name) + str(err)) ) else: warnings.warn( ( "Skip loading for '{0}'. Because '{0}' not in the program.".format( name ) ) ) class Parameter(Variable, metaclass=ParameterMetaClass): """ Parameter is derived from Variable. A parameter is a persistable Variable, and will be updated by optimizers after each iteration. The training of a neural network is essentially the updating of its parameters. Relative to a general Variable, a Parameter has several its own member variables: Args: trainable(bool): True if the parameter need to be updated after iterations. optimize_attr(map): Parameter attributes related with optimizing. Currently, it only contains 'learning_rate'. Default: {'learning_rate': 1.0} regularizer(WeightDecayRegularizer): The Regularizer which will be applied on the parameter. Default: None do_model_average(bool): True if the model average strategy will be applied on this parameter. need_clip (bool): Whether the parameter gradient need to be cliped in optimizer. Default is True. """ def __init__( self, block, shape, dtype, type=core.VarDesc.VarType.LOD_TENSOR, **kwargs, ): if shape is None: raise ValueError("The shape of Parameter should not be None") if dtype is None: raise ValueError("The dtype of Parameter should not be None") for each in shape: if each < 0: raise ValueError( "Each dimension of shape for Parameter must be greater than 0, but received %s" % list(shape) ) Variable.__init__( self, block, persistable=True, shape=shape, dtype=dtype, type=type, **kwargs, ) self.trainable = kwargs.get('trainable', True) self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0}) self.regularizer = kwargs.get('regularizer', None) self.do_model_average = kwargs.get('do_model_average', None) self.need_clip = kwargs.get('need_clip', True) self.is_distributed = False self.is_parameter = True def __str__(self): return self._to_readable_code() def to_string(self, throw_on_error, with_details=False): """ To debug string. Args: throw_on_error(bool): raise exception when self is not initialized when throw_on_error is True with_details(bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True Returns(str): The debug string. Examples: .. code-block:: python import paddle.fluid as fluid import paddle prog = fluid.default_main_program() rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32') debug_str = prog.to_string(throw_on_error=True, with_details=False) print(debug_str) """ assert isinstance(throw_on_error, bool) and isinstance( with_details, bool ) if with_details: res_str = Variable.to_string(self, throw_on_error, True) additional_attr = ( "trainable", "optimize_attr", "regularizer", "do_model_average", "need_clip", ) for attr_name in additional_attr: res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name)) else: res_str = Variable.to_string(self, throw_on_error, False) return res_str __repr__ = __str__ class ParamBase(core.VarBase): """ ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). A ParamBase is a persistable Tensor, and will be updated by optimizers after each iteration. The training of a neural network is essentially the updating of its ParamBase. Relative to a general Tensor, a ParamBase has several its own member variables: Args: trainable(bool): True if the ParamBase need to be updated after iterations. optimize_attr(map): ParamBase attributes related with optimizing. Currently, it only contains 'learning_rate'. Default: {'learning_rate': 1.0} regularizer(WeightDecayRegularizer): The Regularizer which will be applied on the ParamBase. Default: None do_model_average(bool): True if the model average strategy will be applied on this ParamBase. need_clip (bool): Whether the parameter gradient need to be cliped in optimizer. Default is True. """ @dygraph_only def __init__(self, shape, dtype, **kwargs): if shape is None: raise ValueError("The shape of Parameter should not be None") if dtype is None: raise ValueError("The dtype of Parameter should not be None") for each in shape: if each < 0: raise ValueError( "Each dimension of shape for Parameter must be greater than 0, but received %s" % list(shape) ) if dtype is not None: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) name = kwargs.get('name', unique_name.generate('_param_base')) super().__init__( dtype if dtype else core.VarDesc.VarType.FP32, list(shape) if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True, ) trainable = kwargs.get('trainable', True) self.stop_gradient = not trainable self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0}) self.regularizer = kwargs.get('regularizer', None) self.do_model_average = kwargs.get('do_model_average', None) self.need_clip = kwargs.get('need_clip', True) self.is_distributed = kwargs.get('is_distributed', False) # self.block = default_main_program().global_block() @property def trainable(self): return not self.stop_gradient @trainable.setter def trainable(self, trainable): if isinstance(trainable, bool): self.stop_gradient = not trainable else: raise ValueError( "The type of trainable MUST be bool, but the type is ", type(trainable), ) def __str__(self): """ Convert a ParamBase object to a readable string. Returns(str): A readable string. Examples: .. code-block:: python import paddle linear = paddle.nn.Linear(3, 3) print(linear.weight) # Parameter containing: # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False, # [[ 0.48948765, 0.05829060, -0.25524026], # [-0.70368278, 0.52986908, -0.68742192], # [-0.54217887, 0.48439729, 0.34082305]]) """ return "Parameter containing:\n{tensor}".format( tensor=super().__str__() ) def __deepcopy__(self, memo): """ Deep copy parameter, it will always performs Tensor copy. Examples: .. code-block:: python import paddle import copy linear = paddle.nn.Linear(1, 3) linear_copy = copy.deepcopy(linear) print(linear.weight) # Parameter containing: # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False, # [[-0.30929261, -0.90929240, -1.07851017]]) print(linear_copy.weight) # Parameter containing: # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False, # [[-0.30929261, -0.90929240, -1.07851017]]) """ state = copy.deepcopy(self.__dict__, memo) state["name"] = self.name + unique_name.generate("_deepcopy") new_param = ParamBase(self.shape, self.dtype, **state) memo[id(self)] = new_param new_param.copy_(self, True) return new_param def _copy_to(self, device, blocking): state = copy.deepcopy(self.__dict__) new_param = ParamBase(self.shape, self.dtype, **state) core.varbase_copy(self, new_param, device, blocking) return new_param __repr__ = __str__ if hasattr(core, "eager"): _core_eager_eagertensor = core.eager.Tensor else: _core_eager_eagertensor = object class EagerParamBase(_core_eager_eagertensor): """ EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). A EagerParamBase is a persistable Tensor, and will be updated by optimizers after each iteration. The training of a neural network is essentially the updating of its EagerParamBase. Relative to a general Tensor, a EagerParamBase has several its own member variables: Args: trainable(bool): True if the EagerParamBase need to be updated after iterations. optimize_attr(map): EagerParamBase attributes related with optimizing. Currently, it only contains 'learning_rate'. Default: {'learning_rate': 1.0} regularizer(WeightDecayRegularizer): The Regularizer which will be applied on the EagerParamBase. Default: None do_model_average(bool): True if the model average strategy will be applied on this EagerParamBase. need_clip (bool): Whether the parameter gradient need to be cliped in optimizer. Default is True. """ @dygraph_only def __init__(self, shape, dtype, **kwargs): if shape is None: raise ValueError("The shape of Parameter should not be None") if dtype is None: raise ValueError("The dtype of Parameter should not be None") for each in shape: if each < 0: raise ValueError( "Each dimension of shape for Parameter must be greater than 0, but received %s" % list(shape) ) if dtype is not None: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) name = kwargs.get('name', unique_name.generate('_eager_param_base')) if isinstance(shape, core.eager.Tensor): shape = shape.numpy() super().__init__( dtype if dtype else core.VarDesc.VarType.FP32, list(shape) if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True, ) self.retain_grads() trainable = kwargs.get('trainable', True) self.stop_gradient = not trainable self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0}) self.regularizer = kwargs.get('regularizer', None) self.do_model_average = kwargs.get('do_model_average', None) self.need_clip = kwargs.get('need_clip', True) self.is_distributed = kwargs.get('is_distributed', False) # hook functions for lazy initialization self._init_func = None self._init_op_creator = None def set_init_func(self, obj): self._init_func = obj @dygraph_only def initialize(self): assert ( self._init_func is not None ), "Required self._init_func is not None, but received None." self._init_func() # clear function handle to release resource self._init_func = None @property def trainable(self): return not self.stop_gradient @trainable.setter def trainable(self, trainable): if isinstance(trainable, bool): self.stop_gradient = not trainable else: raise ValueError( "The type of trainable MUST be bool, but the type is ", type(trainable), ) def _create_init_op(self, block): """ Call init_op_creator function to create initializer operation in block. """ assert ( self._init_op_creator is not None ), "Required self._init_op_creator is not None, but received None." self._init_op_creator(block) def __str__(self): """ Convert a EagerParamBase object to a readable string. Returns(str): A readable string. Examples: .. code-block:: python import paddle linear = paddle.nn.Linear(3, 3) print(linear.weight) # Parameter containing: # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False, # [[ 0.48948765, 0.05829060, -0.25524026], # [-0.70368278, 0.52986908, -0.68742192], # [-0.54217887, 0.48439729, 0.34082305]]) """ return "Parameter containing:\n{tensor}".format( tensor=super().__str__() ) def __deepcopy__(self, memo): """ Deep copy parameter, it will always performs Tensor copy. Examples: .. code-block:: python import paddle import copy linear = paddle.nn.Linear(1, 3) linear_copy = copy.deepcopy(linear) print(linear.weight) # Parameter containing: # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False, # [[-0.30929261, -0.90929240, -1.07851017]]) print(linear_copy.weight) # Parameter containing: # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False, # [[-0.30929261, -0.90929240, -1.07851017]]) """ state = copy.deepcopy(self.__dict__, memo) state["name"] = self.name + unique_name.generate("_deepcopy") new_param = EagerParamBase(self.shape, self.dtype, **state) memo[id(self)] = new_param new_param.copy_(self, True) return new_param def _copy_to(self, device, blocking): state = copy.deepcopy(self.__dict__) new_param = EagerParamBase(self.shape, self.dtype, **state) core.eager.tensor_copy(self, new_param, device, blocking) return new_param __repr__ = __str__ # program is a global instance. _main_program_ = Program() _startup_program_ = Program() _startup_program_._is_start_up_program_ = True def default_startup_program(): """ Get default/global startup program. The :code:`paddle.nn` function will append the initialization operators into startup program. The :code:`startup_program` will initialize the parameters by the OPs. This method will return the default or the current startup program. Users can use :ref:`api_paddle_fluid_framework_program_guard` to switch :ref:`api_paddle_fluid_framework_Program` . Returns: Program: current default startup program. Returns type: Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32') out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu") print("main program is: {}".format(paddle.static.default_main_program())) print("start up program is: {}".format(paddle.static.default_startup_program())) """ return _startup_program_ def default_main_program(): """ This API can be used to get ``default main program`` which store the descriptions of Ops and tensors. For example ``z = paddle.add(x, y)`` will create a new ``add`` Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . The ``default main program`` is the default value for ``Program`` parameter in a lot of APIs. For example, the :code:`Executor.run()` will execute the :code:`default_main_program` when the program is not specified. If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` . Returns: Program: A ``Program`` which holding the descriptions of OPs and tensors in the network. Examples: .. code-block:: python import paddle paddle.enable_static() # Sample Network: x = paddle.static.data(name='x', shape=[100, 100], dtype='float32') y = paddle.static.data(name='x', shape=[100, 100], dtype='float32') out = paddle.add(x, y) #print the number of blocks in the program, 1 in this case print(paddle.static.default_main_program().num_blocks) # 1 #print the default_main_program print(paddle.static.default_main_program()) """ return _main_program_ def switch_main_program(program): """ Switch the main program to a new program. Args: program(Program): The new main program Returns: Program: The previous main program """ global _main_program_ prev_program = _main_program_ _main_program_ = program return prev_program def switch_startup_program(program): """ Switch the startup program to a new program Args: program(Program): The new startup program Returns: Program: The previous startup program """ global _startup_program_ prev_program = _startup_program_ _startup_program_ = program return prev_program @signature_safe_contextmanager def program_guard(main_program, startup_program=None): """ :api_attr: Static Graph Change the global main program and startup program with ``with`` statement. Layer functions in the Python ``with`` block will append operators and Tensors to the new main programs. Args: main_program(Program): New main program inside ``with`` statement. startup_program(Program, optional): New startup program inside ``with`` statement. :code:`None` means not changing startup program, default_startup_program is still used. Default: None. Examples: .. code-block:: python import paddle paddle.enable_static() main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32') hidden = paddle.static.nn.fc(x=data, size=10, activation='relu') Notes: The temporary :code:`Program` can be used if the user does not need to construct either of startup program or main program. Examples: .. code-block:: python import paddle paddle.enable_static() main_program = paddle.static.Program() # does not care about startup program. Just pass a temporary value. with paddle.static.program_guard(main_program, paddle.static.Program()): data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32') """ from .data_feeder import check_type check_type( main_program, 'main_program', Program, 'paddle.static.program_guard' ) main_program = switch_main_program(main_program) if startup_program is not None: check_type( startup_program, 'startup_program', Program, 'paddle.static.program_guard', ) # Tag the program __is_start_up as True startup_program._is_start_up_program_ = True startup_program = switch_startup_program(startup_program) try: yield finally: switch_main_program(main_program) if startup_program is not None: switch_startup_program(startup_program) def _get_var(name, program=None): """ Get a variable by name from the global block of a program. Args: name(str): name of the variable program(Program|None): program object. If None, default_global_program() will be used. Returns: Variable """ if program is None: program = default_main_program() assert isinstance(name, str) assert isinstance(program, Program) return program.global_block().var(name) @signature_safe_contextmanager def _dygraph_guard(tracer): tmp_tracer = global_var._dygraph_tracer_ global_var._dygraph_tracer_ = tracer if tracer is not None: core._switch_tracer(tracer) try: yield finally: if tmp_tracer is not None: core._switch_tracer(tmp_tracer) global_var._dygraph_tracer_ = tmp_tracer @signature_safe_contextmanager def _dygraph_place_guard(place): global _global_expected_place_ tmp_place = _global_expected_place_ _global_expected_place_ = place _set_dygraph_tracer_expected_place(place) try: yield finally: _global_expected_place_ = tmp_place _set_dygraph_tracer_expected_place(_global_expected_place_) def switch_device(device): global _current_device pre_device = _current_device _current_device = device return pre_device @signature_safe_contextmanager def device_guard(device=None): """ Note: The API only supports static graph mode. A context manager that specifies the device on which the OP will be placed. Args: device(str|None): Specify the device to use in the context. It should be ``cpu``, ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. When it is set to 'cpu' or 'gpu', all OPs created in the context will be placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on single-card, the device index will be the same as the device on which the executor runs. Default: None, OPs in this context will be automatically assigned devices. Examples: .. code-block:: python # required: gpu import paddle paddle.enable_static() support_gpu = paddle.is_compiled_with_cuda() place = paddle.CPUPlace() if support_gpu: place = paddle.CUDAPlace(0) # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0) data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32') data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32') shape = paddle.shape(data2) with paddle.static.device_guard("cpu"): # Ops created here will be placed on CPUPlace shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4]) with paddle.static.device_guard('gpu'): # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace out = paddle.reshape(data1, shape=shape) exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) result = exe.run(fetch_list=[out]) """ index = None if device and ':' in device: device, index = device.split(':') if device == 'cpu': raise ValueError("Should not set device id for cpu.") if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]: raise ValueError( "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None " "when there is no need to specify device. But received %s" % device ) if index: device = ":".join([device, index]) pre_device = switch_device(device) try: yield finally: switch_device(pre_device) def _switch_cuda_graph_mode(cuda_graph_attr): global _current_cuda_graph_mode pre_mode = _current_cuda_graph_mode _current_cuda_graph_mode = cuda_graph_attr return pre_mode @signature_safe_contextmanager def _cuda_graph_guard(cuda_graph_attr=None): """ Note: The API only supports static graph mode. A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode. Args: cuda_graph_attr(str|None): The cuda graph attr with the format of: cuda_graph_capture_mode;memory_pool_id;cuda_graph_id """ assert ( not _non_static_mode() ), "cuda_graph_guard only works under static graph mode" assert ( core.is_compiled_with_cuda() ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda" pre_mode = _switch_cuda_graph_mode(cuda_graph_attr) try: yield finally: _switch_cuda_graph_mode(pre_mode) def set_flags(flags): """ This function sets the GFlags value in Paddle. For FLAGS please refer to :ref:`en_guides_flags_flags` Args: flags (dict): A dict contains flags and its value. Examples: .. code-block:: python import paddle paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0}) """ if not isinstance(flags, dict): raise TypeError('flags in set_flags should be a dict') for key, value in flags.items(): if _global_flags().is_public(key): _global_flags()[key] = value else: raise ValueError( "Flag %s cannot set its value through this function." % (key) ) def get_flags(flags): """ This function gets the GFlags value in Paddle. For FLAGS please refer to :ref:`en_guides_flags_flags` Args: flags(list|tuple|str): A list/tuple of string or a string which is the flag's name. Returns: flag's value in Paddle. Examples: .. code-block:: python import paddle flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf'] res = paddle.get_flags(flags) print(res) # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False} """ flags_value = {} if isinstance(flags, (list, tuple)): for key in flags: if _global_flags().is_public(key): value = _global_flags()[key] temp = {key: value} flags_value.update(temp) else: raise ValueError( 'Flag %s cannot get its value through this function.' % (key) ) elif isinstance(flags, str): if _global_flags().is_public(flags): value = _global_flags()[flags] temp = {flags: value} flags_value.update(temp) else: raise ValueError( 'Flag %s cannot get its value through this function.' % (flags) ) else: raise TypeError('Flags in get_flags should be a list, tuple or string.') return flags_value def _get_paddle_place(place): "convert the string to paddle Place" if place is None: return place if isinstance( place, ( core.Place, core.XPUPlace, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace, core.IPUPlace, core.MLUPlace, core.CustomPlace, ), ): return place if not isinstance(place, str): raise ValueError( "place only support string which is 'Place' and so on." ) place = place.lower() if place == "cpu": return core.CPUPlace() if place == "device": return core.Place() # GPU avaliable_gpu_place = re.match(r'gpu:\d+', place) if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place: if not core.is_compiled_with_cuda(): raise ValueError( "The device should not be {}, since PaddlePaddle is " "not compiled with CUDA".format(avaliable_gpu_place) ) if place == "gpu_pinned": return core.CUDAPinnedPlace() elif place == "gpu": return core.CUDAPlace(0) else: place_info_list = place.split(':', 1) device_id = place_info_list[1] device_id = int(device_id) return core.CUDAPlace(device_id) # XPU avaliable_xpu_place = re.match(r'xpu:\d+', place) if avaliable_xpu_place: if not core.is_compiled_with_xpu(): raise ValueError( "The device should not be {}, since PaddlePaddle is " "not compiled with XPU".format(avaliable_xpu_place) ) place_info_list = place.split(':', 1) device_id = place_info_list[1] device_id = int(device_id) return core.XPUPlace(device_id) # NPU avaliable_npu_place = re.match(r'npu:\d+', place) if avaliable_npu_place: if not core.is_compiled_with_npu(): raise ValueError( "The device should not be {}, since PaddlePaddle is " "not compiled with NPU".format(avaliable_npu_place) ) place_info_list = place.split(':', 1) device_id = place_info_list[1] device_id = int(device_id) return core.NPUPlace(device_id) # IPU avaliable_ipu_place = re.match(r'ipu:\d+', place) if avaliable_ipu_place: if not core.is_compiled_with_ipu(): raise ValueError( "The device should not be {}, since PaddlePaddle is " "not compiled with IPU".format(avaliable_ipu_place) ) place_info_list = place.split(':', 1) device_id = place_info_list[1] device_id = int(device_id) return core.IPUPlace(device_id) # MLU avaliable_mlu_place = re.match(r'mlu:\d+', place) if avaliable_mlu_place: if not core.is_compiled_with_mlu(): raise ValueError( "The device should not be {}, since PaddlePaddle is " "not compiled with MLU".format(avaliable_mlu_place) ) place_info_list = place.split(':', 1) device_id = place_info_list[1] device_id = int(device_id) return core.MLUPlace(device_id) raise ValueError( "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format( place ) ) def _get_paddle_place_list(places): if not isinstance(places, (list, tuple)): raise TypeError("places must to be List or Tuple") ret = [] for p in places: p = _get_paddle_place(p) ret.append(p) return ret