/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/gserver/layers/Layer.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/gserver/layers/CTCLayer.h" #include "paddle/gserver/layers/WarpCTCLayer.h" #include "ModelConfig.pb.h" #include "TestUtil.h" using namespace paddle; // NOLINT using namespace std; // NOLINT P_DECLARE_bool(use_gpu); const real* getData(const Matrix& matrix) { if (matrix.useGpu()) { MatrixPtr cpuMatrix = Matrix::create( matrix.getHeight(), matrix.getWidth(), matrix.isTransposed(), false); cpuMatrix->copyFrom(matrix); return cpuMatrix->getData(); } else { return matrix.getData(); } } int checkError(const Matrix& matrix1, const Matrix& matrix2) { CHECK_EQ(matrix1.getHeight(), matrix2.getHeight()); CHECK_EQ(matrix1.getWidth(), matrix2.getWidth()); CHECK_EQ(matrix1.isTransposed(), matrix2.isTransposed()); #ifndef PADDLE_TYPE_DOUBLE real err = 1e-3; #else real err = 1e-10; #endif int height = matrix1.getHeight(); int width = matrix1.getWidth(); const real* data1 = getData(matrix1); const real* data2 = getData(matrix2); int count = 0; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { if (fabs(data1[i * width + j] - data2[i * width + j]) > err) { count++; } } } EXPECT_EQ(count, 0) << "There are " << count << " different element."; return count; } void initArgument(size_t batchSize, int layerSize, bool useGpu, Argument& data) { data.value = Matrix::create(batchSize, layerSize, false, useGpu); data.grad = Matrix::create(batchSize, layerSize, false, useGpu); data.value->randomizeUniform(); data.value->add(-0.5); data.grad->zeroMem(); generateSequenceStartPositions(batchSize, data.sequenceStartPositions); } LayerPtr createDataLayer( string name, size_t batchSize, int layerSize, bool useGpu, Argument& data) { LayerConfig layerConfig; layerConfig.set_name(name); layerConfig.set_type("data"); layerConfig.set_size(layerSize); LayerPtr layer = LayerPtr(new DataLayer(layerConfig)); DataLayerPtr dataLayer = std::dynamic_pointer_cast(layer); dataLayer->setData(data); dataLayer->forward(PASS_GC); return layer; } LayerPtr createLabelLayer(string name, size_t batchSize, size_t numClasses, bool useGpu) { LayerConfig layerConfig; layerConfig.set_name(name); layerConfig.set_type("data"); layerConfig.set_size(1); LayerPtr layer = LayerPtr(new DataLayer(layerConfig)); Argument data; data.ids = IVector::create(batchSize, useGpu); data.ids->rand(numClasses - 1); generateSequenceStartPositions(batchSize, data.sequenceStartPositions); DataLayerPtr labelLayer = std::dynamic_pointer_cast(layer); labelLayer->setData(data); labelLayer->forward(PASS_GC); return layer; } LayerPtr createCTCLayer(string name, size_t numClasses, bool useGpu, bool normByTimes, LayerPtr dataLayer, LayerPtr labelLayer) { LayerMap layerMap; layerMap[dataLayer->getName()] = dataLayer; layerMap[labelLayer->getName()] = labelLayer; ParameterMap parameterMap; LayerConfig layerConfig; layerConfig.set_name(name); layerConfig.set_type("ctc"); layerConfig.set_size(numClasses); layerConfig.set_norm_by_times(normByTimes); layerConfig.add_inputs(); LayerInputConfig& input0 = *(layerConfig.mutable_inputs(0)); input0.set_input_layer_name(dataLayer->getName()); layerConfig.add_inputs(); LayerInputConfig& input1 = *(layerConfig.mutable_inputs(1)); input1.set_input_layer_name(labelLayer->getName()); LayerPtr layer = LayerPtr(new CTCLayer(layerConfig)); layerMap[layer->getName()] = layer; layer->init(layerMap, parameterMap); ActivationFunction* softmaxActivation = ActivationFunction::create("softmax"); softmaxActivation->forward(dataLayer->getOutput()); layer->forward(PASS_GC); layer->backward(); softmaxActivation->backward(dataLayer->getOutput()); return layer; } LayerPtr createWarpCTCLayer(string name, size_t numClasses, bool useGpu, bool normByTimes, LayerPtr dataLayer, LayerPtr labelLayer) { LayerMap layerMap; layerMap[dataLayer->getName()] = dataLayer; layerMap[labelLayer->getName()] = labelLayer; ParameterMap parameterMap; LayerConfig layerConfig; layerConfig.set_name(name); layerConfig.set_type("warp_ctc"); layerConfig.set_size(numClasses); layerConfig.set_blank(numClasses - 1); layerConfig.set_norm_by_times(normByTimes); layerConfig.add_inputs(); LayerInputConfig& input0 = *(layerConfig.mutable_inputs(0)); input0.set_input_layer_name(dataLayer->getName()); layerConfig.add_inputs(); LayerInputConfig& input1 = *(layerConfig.mutable_inputs(1)); input1.set_input_layer_name(labelLayer->getName()); LayerPtr layer = LayerPtr(new WarpCTCLayer(layerConfig)); layerMap[layer->getName()] = layer; layer->init(layerMap, parameterMap); layer->forward(PASS_GC); layer->backward(); return layer; } TEST(Layer, WarpCTCLayer) { for (auto layerSize : {10, 64}) { for (auto batchSize : {1, 10, 32}) { for (auto normByTimes : {false, true}) { for (auto useGpu : {false, true}) { #ifdef PADDLE_ONLY_CPU if (useGpu) continue; #endif LOG(INFO) << "layerSize=" << layerSize << " batchSize=" << batchSize << " normByTimes = " << normByTimes << " useGpu=" << useGpu; FLAGS_use_gpu = useGpu; Argument data0; initArgument(batchSize, layerSize, useGpu, data0); Argument data1; data1.resizeAndCopyFrom(data0); LayerPtr dataLayer0 = createDataLayer("data", batchSize, layerSize, useGpu, data0); LayerPtr dataLayer1 = createDataLayer("data", batchSize, layerSize, useGpu, data1); LayerPtr labelLayer = createLabelLayer("label", batchSize, layerSize, useGpu); LayerPtr warpctcLayer = createWarpCTCLayer( "cost", layerSize, useGpu, normByTimes, dataLayer0, labelLayer); LayerPtr ctcLayer = createCTCLayer( "cost", layerSize, useGpu, normByTimes, dataLayer1, labelLayer); /// Check cost LOG(INFO) << "Check cost: " << checkError(*(warpctcLayer->getOutput().value), *(ctcLayer->getOutput().value)) << " different elements."; /// Check gradients LOG(INFO) << "Check gradients: " << checkError(*(dataLayer0->getOutput().grad), *(dataLayer1->getOutput().grad)) << " different elements"; } } } } } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); return RUN_ALL_TESTS(); }