// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/gaussian_kernel.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void GaussianKernel(const Context& ctx, const IntArray& shape, float mean, float std, int seed, DataType dtype, DenseTensor* out) { std::normal_distribution dist(mean, std); int64_t size = out->numel(); ctx.template Alloc(out); auto* data = out->data(); uint64_t seed_v = static_cast(seed); // TODO(pangyoki): implement GetXPURandomEngine to set different seeds on // corresponding XPU device. auto engine = paddle::framework::GetCPURandomEngine(seed_v); std::unique_ptr data_cpu(new T[size]); for (int64_t i = 0; i < size; ++i) { data_cpu[i] = dist(*engine); } paddle::memory::Copy(ctx.GetPlace(), data, phi::CPUPlace(), reinterpret_cast(data_cpu.get()), size * sizeof(T)); } } // namespace phi PD_REGISTER_KERNEL(gaussian, XPU, ALL_LAYOUT, phi::GaussianKernel, float) {}