# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import contextlib import unittest import numpy as np import six import paddle import paddle.fluid as fluid from paddle import compat as cpt from paddle.fluid import core, framework, executor from paddle.fluid.layers.utils import _hash_with_id paddle.enable_static() @contextlib.contextmanager def program_scope_guard(): prog = fluid.Program() startup_prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog, startup_prog): with fluid.unique_name.guard(): yield # NOTE: Because RunProgramOp has a special output of type std::vector, # the OpTest cannot be used in RunProgramOp. The variable type cannot be specified # when creating output variables in OpTest, default type is LoDTensor # NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp, # because it hold BlockDesc type attr, OperatorFactory can't parse this attr type # when create Operator, so here compare gradients with static graph # NOTE: Here rewrite a simple unittest framework for RunProgramOp class RunProgramOpTest(unittest.TestCase): def build_model(self): raise NotImplementedError( "RunProgramOp test should implement build_model") def check_output(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: # TODO: RunProgramOp is not recommended for use in static mode now self.expect_outs = self.run_static_model(place, is_test=True) self.check_output_with_place(place) def check_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: # TODO: RunProgramOp is not recommended for use in static mode now self.expect_grads = self.run_static_model(place, is_test=False) self.check_grad_with_place(place) def run_static_model(self, place, is_test=True): with program_scope_guard(): startup_program = fluid.default_startup_program() main_program = fluid.default_main_program() self.build_model() exe = fluid.Executor(place) exe.run(startup_program) if is_test: fetch_list = self.output_names['Out'] else: fetch_list = self.get_param_grad_names() outs = exe.run(main_program, feed=self.inputs['X'], fetch_list=fetch_list) return outs def get_program_desc(self): with program_scope_guard(): fwd_op_num = self.build_model() return fluid.default_main_program().desc, fwd_op_num def prepare_attrs(self): return { 'global_block': self.program_desc.block(0), 'start_op_index': 0, 'end_op_index': self.fwd_op_num } def get_param_grad_names(self): grad_names = [] for var_name in self.inputs['Params']: grad_names.append(var_name + core.grad_var_suffix()) return grad_names def check_output_with_place(self, place): # Step 1. run op actual_outs = self.calc_dygraph_output(place) # Step 2. compare output for expect_v, actual_v in six.moves.zip(self.expect_outs, actual_outs): self.assertTrue(np.allclose(expect_v, actual_v.numpy(), atol=1e-5)) def check_grad_with_place(self, place): # Step 1. calc grads actual_grads = self.calc_dygraph_grad(place) # Step 2. compare grads for expect_v, actual_v in six.moves.zip(self.expect_grads, actual_grads): np.testing.assert_array_almost_equal(expect_v, actual_v) self.assertTrue(np.allclose(expect_v, actual_v, atol=1e-5)) def prepare_dygraph_input(self, place, return_param_list=False): def create_var_base(is_input, name, np_value, stop_gradient): var = core.VarBase( value=np_value, name=name, place=place, zero_copy=True) var.stop_gradient = stop_gradient return var # build inputs inputs = {} param_list = [] inputs['X'] = [] for name, np_value in self.inputs['X'].items(): var = create_var_base(True, name, np_value, True) inputs['X'].append(var) inputs['Params'] = [] for name, np_value in self.inputs['Params'].items(): var = create_var_base(True, name, np_value, False) inputs['Params'].append(var) if return_param_list: param_list.append(var) if return_param_list: return inputs, param_list return inputs def prepare_dygraph_output(self): def create_var_base(is_input, name): var = framework._varbase_creator(dtype=None, shape=None, name=name) var.stop_gradient = False return var # build outputs outputs = {} outputs['Out'] = [] for name in self.output_names['Out']: outputs['Out'].append(create_var_base(False, name)) outputs['OutScope'] = framework._varbase_creator( type=core.VarDesc.VarType.STEP_SCOPES, name="program_out_scope", persistable=True) inner_scope = core.Scope() outputs['OutScope'].value().set_scope(inner_scope) outputs['DOut'] = [create_var_base(False, "Fake_var")] return outputs def calc_dygraph_output(self, place): self.program_desc, self.fwd_op_num = self.get_program_desc() self.attrs = self.prepare_attrs() self.attrs['program_id'] = _hash_with_id(self.program_desc) with fluid.dygraph.guard(place): inputs = self.prepare_dygraph_input(place) outputs = self.prepare_dygraph_output() framework._dygraph_tracer().trace_op( type=self.op_type, inputs=inputs, outputs=outputs, attrs=self.attrs) return outputs['Out'] def calc_dygraph_grad(self, place): self.program_desc, self.fwd_op_num = self.get_program_desc() self.attrs = self.prepare_attrs() self.attrs['program_id'] = _hash_with_id(self.program_desc) with fluid.dygraph.guard(place): # Step 1. run forward inputs, input_param_list = self.prepare_dygraph_input(place, True) outputs = self.prepare_dygraph_output() framework._dygraph_tracer().trace_op( type=self.op_type, inputs=inputs, outputs=outputs, attrs=self.attrs) for param in input_param_list: var_type = self._get_grad_vartype(param.name) if var_type is None: continue param._set_grad_type(var_type) # Step 2. run backward # NOTE: in unittest, only support single output now actual_outs = outputs['Out'] assert len(actual_outs) == 1 actual_outs[0].backward() # Step 3. prepare grads grads = [] for param in input_param_list: grad = param.gradient() grads.append(grad) return grads def _get_grad_vartype(self, name): assert self.program_desc is not None grad_name = name + core.grad_var_suffix() for i in six.moves.range(self.program_desc.num_blocks()): block = self.program_desc.block(i) var_desc = block.find_var_recursive(cpt.to_bytes(grad_name)) return var_desc.type() if var_desc is not None else None class TestRunProgramOpWithFC(RunProgramOpTest): def setUp(self): self.op_type = "run_program" self.dtype = np.float32 self.input_names = { 'X': ['img'], 'Params': ['weight_param', 'bias_param'] } self.output_names = {'Out': ['fc_0.tmp_2']} self.inputs = { 'X': { self.input_names['X'][0]: np.random.random((32, 1, 28, 28)) .astype(self.dtype) }, 'Params': { self.input_names['Params'][0]: np.random.random( (784, 10)).astype(self.dtype), self.input_names['Params'][1]: np.random.random( (32, 10)).astype(self.dtype) } } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad() def build_model(self): # 1. simple model img = fluid.data( name=self.input_names['X'][0], shape=[None, 1, 28, 28], dtype='float32') weight_attr = fluid.ParamAttr( name=self.input_names['Params'][0], learning_rate=0.5, initializer=fluid.initializer.NumpyArrayInitializer(self.inputs[ 'Params'][self.input_names['Params'][0]]), trainable=True) bias_attr = fluid.ParamAttr( name=self.input_names['Params'][1], learning_rate=0.5, initializer=fluid.initializer.NumpyArrayInitializer(self.inputs[ 'Params'][self.input_names['Params'][1]]), trainable=True) pred = fluid.layers.fc(input=img, size=10, param_attr=weight_attr, bias_attr=bias_attr, act='relu') # 2. get forward op num fwd_op_num = fluid.default_main_program().global_block().desc.op_size() # 3. append backward grads = fluid.backward.gradients(targets=[pred], inputs=[img]) return fwd_op_num class TestRunProgramOpWithEmbedding(RunProgramOpTest): def setUp(self): self.op_type = "run_program" self.dtype = np.float32 self.input_names = {'X': ['x'], 'Params': ['emb_weight']} self.output_names = {'Out': ['reduce_sum_0.tmp_0']} self.inputs = { 'X': { 'x': np.array([[1, 3, 0, 4, 7]]).astype("int64") }, 'Params': { 'emb_weight': np.random.random(size=(10, 16)).astype("float32") } } def test_check_output(self): self.check_output() def test_check_grad(self): # NOTE: fecth not support SelectedRows, catnot compare # sparse gradients with staic mode, only run dygraph places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: # TODO: RunProgramOp is not recommended for use in static mode now self.calc_dygraph_grad(place) def build_model(self): # 1. simple model x = fluid.layers.data( name=self.input_names['X'][0], shape=[5], dtype='int64') emb = fluid.input.embedding( input=x, size=[10, 16], param_attr=fluid.ParamAttr( name="emb_weight", learning_rate=10, initializer=fluid.initializer.NumpyArrayInitializer(self.inputs[ 'Params'][self.input_names['Params'][0]])), is_sparse=True) y = fluid.layers.reduce_sum(emb, dim=-1) # 2. get forward op num fwd_op_num = fluid.default_main_program().global_block().desc.op_size() # 3. append backward grads = fluid.backward.gradients(targets=[y], inputs=[x]) return fwd_op_num if __name__ == "__main__": unittest.main()