# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddle import _C_ops, _legacy_C_ops from paddle.fluid.framework import dygraph_only, core, convert_np_dtype_to_dtype_ __all__ = [] _int_dtype_ = [ core.VarDesc.VarType.UINT8, core.VarDesc.VarType.INT8, core.VarDesc.VarType.INT16, core.VarDesc.VarType.INT32, core.VarDesc.VarType.INT64, core.VarDesc.VarType.BOOL, ] @dygraph_only def sin(x, name=None): """ Calculate elementwise sin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = sin(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.sin(sparse_x) """ return _C_ops.sparse_sin(x) @dygraph_only def tan(x, name=None): """ Calculate elementwise tan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = tan(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.tan(sparse_x) """ return _C_ops.sparse_tan(x) @dygraph_only def asin(x, name=None): """ Calculate elementwise asin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = asin(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.asin(sparse_x) """ return _C_ops.sparse_asin(x) @dygraph_only def transpose(x, perm, name=None): """ Changes the perm order of ``x`` without changing its data, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = transpose(x, perm) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. perm (list|tuple): Permute the input according to the data of perm. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A transposed Sparse Tensor with the same data type as ``x``. Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.transpose(sparse_x, [1, 0]) """ return _C_ops.sparse_transpose(x, perm) @dygraph_only def atan(x, name=None): """ Calculate elementwise atan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = atan(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.atan(sparse_x) """ return _C_ops.sparse_atan(x) @dygraph_only def sinh(x, name=None): """ Calculate elementwise sinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = sinh(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.sinh(sparse_x) """ return _C_ops.sparse_sinh(x) @dygraph_only def asinh(x, name=None): """ Calculate elementwise asinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = asinh(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.asinh(sparse_x) """ return _C_ops.sparse_asinh(x) @dygraph_only def atanh(x, name=None): """ Calculate elementwise atanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = atanh(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.atanh(sparse_x) """ return _C_ops.sparse_atanh(x) @dygraph_only def tanh(x, name=None): """ Calculate elementwise tanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = tanh(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.tanh(sparse_x) """ return _C_ops.sparse_tanh(x) @dygraph_only def square(x, name=None): """ Calculate elementwise square of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = square(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.square(sparse_x) """ return _C_ops.sparse_square(x) @dygraph_only def sqrt(x, name=None): """ Calculate elementwise sqrt of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = sqrt(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.sqrt(sparse_x) """ return _C_ops.sparse_sqrt(x) @dygraph_only def log1p(x, name=None): """ Calculate the natural log of (1+x), requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = ln(1+x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.log1p(sparse_x) """ return _C_ops.sparse_log1p(x) @dygraph_only def cast(x, index_dtype=None, value_dtype=None, name=None): """ cast non-zero-index of SparseTensor to `index_dtype`, non-zero-element of SparseTensor to `value_dtype` , requiring x to be a SparseCooTensor or SparseCsrTensor. Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. index_dtype (np.dtype|str, optional): Data type of the index of SparseCooTensor, or crows/cols of SparseCsrTensor. Can be uint8, int8, int16, int32, int64. value_dtype (np.dtype|str, optional): Data type of the value of SparseCooTensor, SparseCsrTensor. Can be bool, float16, float32, float64, int8, int32, int64, uint8. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2, 0, 1]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.cast(sparse_x, 'int32', 'float64') """ if index_dtype and not isinstance(index_dtype, core.VarDesc.VarType): index_dtype = convert_np_dtype_to_dtype_(index_dtype) if value_dtype and not isinstance(value_dtype, core.VarDesc.VarType): value_dtype = convert_np_dtype_to_dtype_(value_dtype) return _C_ops.sparse_cast(x, index_dtype, value_dtype) @dygraph_only def pow(x, factor, name=None): """ Calculate elementwise pow of x, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = x^{factor} Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. factor (float|int): factor of pow. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.pow(sparse_x, 2) """ return _C_ops.sparse_pow(x, float(factor)) @dygraph_only def neg(x, name=None): """ Calculate elementwise negative of x, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = -x Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.neg(sparse_x) """ return _C_ops.sparse_scale(x, -1.0, 0.0, True) @dygraph_only def abs(x, name=None): """ Calculate elementwise absolute value of x, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = |x| Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.abs(sparse_x) """ return _C_ops.sparse_abs(x) @dygraph_only def coalesce(x): r""" the coalesced operator include sorted and merge, after coalesced, the indices of x is sorted and unique. Parameters: x (Tensor): the input SparseCooTensor. Returns: Tensor: return the SparseCooTensor after coalesced. Examples: .. code-block:: python import paddle from paddle.incubate import sparse indices = [[0, 0, 1], [1, 1, 2]] values = [1.0, 2.0, 3.0] sp_x = sparse.sparse_coo_tensor(indices, values) sp_x = sparse.coalesce(sp_x) print(sp_x.indices()) #[[0, 1], [1, 2]] print(sp_x.values()) #[3.0, 3.0] """ return _C_ops.sparse_coalesce(x) @dygraph_only def rad2deg(x, name=None): """ Convert each of the elements of input x from angles in radians to degrees, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: rad2deg(x) = 180/ \pi * x Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([3.142, 0., -3.142]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.rad2deg(sparse_x) """ if x.dtype in _int_dtype_: x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32) return _C_ops.sparse_scale(x, 180.0 / np.pi, 0.0, True) @dygraph_only def deg2rad(x, name=None): """ Convert each of the elements of input x from degrees to angles in radians, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: deg2rad(x) = \pi * x / 180 Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-180, 0, 180]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.deg2rad(sparse_x) """ if x.dtype in _int_dtype_: x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32) return _C_ops.sparse_scale(x, np.pi / 180.0, 0.0, True) @dygraph_only def expm1(x, name=None): """ Calculate elementwise `exp(x)-1` , requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = exp(x) - 1 Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.expm1(sparse_x) """ return _C_ops.sparse_expm1(x) @dygraph_only def reshape(x, shape, name=None): """ Changes the shape of ``x`` without changing its value, requiring x to be a SparseCooTensor or SparseCsrTensor. Currently this function can only reshape the sparse dims of ``x`` , but ``shape`` argument must be specified as the shape of the reshaped tensor. Note that if x is a SparseCsrTensor, then len(shape) must be 2 or 3. There are some tricks when specifying the target shape. - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1. - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The indices of 0 in the target shape can not exceed the rank of x. Here are some examples to explain it. - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged. - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions. - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x. Args: x (Tensor): The input sparse tensor with data type ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``. shape (list|tuple): Define the target shape. At most one dimension of the target shape can be -1. The data type is ``int32``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A reshaped Tensor with the same data type as ``x``. Examples: .. code-block:: python import paddle x_shape = [6, 2, 3] new_shape = [1, 0, 2, -1, 3] format = "coo" dense_x = paddle.randint(-100, 100, x_shape) * paddle.randint(0, 2, x_shape) if format == "coo": sp_x = dense_x.to_sparse_coo(len(x_shape)) else: sp_x = dense_x.to_sparse_csr() sp_out = paddle.incubate.sparse.reshape(sp_x, new_shape) print(sp_out) # the shape of sp_out is [1, 2, 2, 3, 3] """ return _C_ops.sparse_reshape(x, shape)