# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle paddle.framework.set_default_dtype("float64") paddle.enable_static() import unittest import numpy as np from convert import convert_params_for_cell_static from rnn_numpy import GRUCell, LSTMCell, SimpleRNNCell class TestSimpleRNNCell(unittest.TestCase): def __init__(self, bias=True, place="cpu"): super().__init__(methodName="runTest") self.bias = bias self.place = ( paddle.CPUPlace() if place == "cpu" else paddle.CUDAPlace(0) ) def setUp(self): rnn1 = SimpleRNNCell(16, 32, bias=self.bias) mp = paddle.static.Program() sp = paddle.static.Program() with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): rnn2 = paddle.nn.SimpleRNNCell( 16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias ) place = self.place exe = paddle.static.Executor(place) scope = paddle.fluid.Scope() with paddle.static.scope_guard(scope): exe.run(sp) convert_params_for_cell_static(rnn1, rnn2, place) self.mp = mp self.sp = sp self.rnn1 = rnn1 self.rnn2 = rnn2 self.executor = exe self.scope = scope def test_with_initial_state(self): mp = self.mp.clone() sp = self.sp rnn1 = self.rnn1 rnn2 = self.rnn2 exe = self.executor scope = self.scope x = np.random.randn(4, 16) prev_h = np.random.randn(4, 32) y1, h1 = rnn1(x, prev_h) with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): x_data = paddle.static.data( "input", [-1, 16], dtype=paddle.framework.get_default_dtype(), ) init_h = paddle.static.data( "init_h", [-1, 32], dtype=paddle.framework.get_default_dtype(), ) y, h = rnn2(x_data, init_h) feed_dict = {x_data.name: x, init_h.name: prev_h} with paddle.static.scope_guard(scope): y2, h2 = exe.run(mp, feed=feed_dict, fetch_list=[y, h]) np.testing.assert_allclose(h1, h2, atol=1e-8, rtol=1e-5) def test_with_zero_state(self): mp = self.mp.clone() sp = self.sp rnn1 = self.rnn1 rnn2 = self.rnn2 exe = self.executor scope = self.scope x = np.random.randn(4, 16) y1, h1 = rnn1(x) with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): x_data = paddle.static.data( "input", [-1, 16], dtype=paddle.framework.get_default_dtype(), ) y, h = rnn2(x_data) feed_dict = {x_data.name: x} with paddle.static.scope_guard(scope): y2, h2 = exe.run( mp, feed=feed_dict, fetch_list=[y, h], use_prune=True ) np.testing.assert_allclose(h1, h2, atol=1e-8, rtol=1e-5) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() class TestGRUCell(unittest.TestCase): def __init__(self, bias=True, place="cpu"): super().__init__(methodName="runTest") self.bias = bias self.place = ( paddle.CPUPlace() if place == "cpu" else paddle.CUDAPlace(0) ) def setUp(self): rnn1 = GRUCell(16, 32, bias=self.bias) mp = paddle.static.Program() sp = paddle.static.Program() with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): rnn2 = paddle.nn.GRUCell( 16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias ) place = self.place exe = paddle.static.Executor(place) scope = paddle.fluid.Scope() with paddle.static.scope_guard(scope): exe.run(sp) convert_params_for_cell_static(rnn1, rnn2, place) self.mp = mp self.sp = sp self.rnn1 = rnn1 self.rnn2 = rnn2 self.place = place self.executor = exe self.scope = scope def test_with_initial_state(self): mp = self.mp.clone() sp = self.sp rnn1 = self.rnn1 rnn2 = self.rnn2 exe = self.executor scope = self.scope x = np.random.randn(4, 16) prev_h = np.random.randn(4, 32) y1, h1 = rnn1(x, prev_h) with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): x_data = paddle.static.data( "input", [-1, 16], dtype=paddle.framework.get_default_dtype(), ) init_h = paddle.static.data( "init_h", [-1, 32], dtype=paddle.framework.get_default_dtype(), ) y, h = rnn2(x_data, init_h) feed_dict = {x_data.name: x, init_h.name: prev_h} with paddle.static.scope_guard(scope): y2, h2 = exe.run(mp, feed=feed_dict, fetch_list=[y, h]) np.testing.assert_allclose(h1, h2, atol=1e-8, rtol=1e-5) def test_with_zero_state(self): mp = self.mp.clone() sp = self.sp rnn1 = self.rnn1 rnn2 = self.rnn2 exe = self.executor scope = self.scope x = np.random.randn(4, 16) y1, h1 = rnn1(x) with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): x_data = paddle.static.data( "input", [-1, 16], dtype=paddle.framework.get_default_dtype(), ) y, h = rnn2(x_data) feed_dict = {x_data.name: x} with paddle.static.scope_guard(scope): y2, h2 = exe.run( mp, feed=feed_dict, fetch_list=[y, h], use_prune=True ) np.testing.assert_allclose(h1, h2, atol=1e-8, rtol=1e-5) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() class TestLSTMCell(unittest.TestCase): def __init__(self, bias=True, place="cpu"): super().__init__(methodName="runTest") self.bias = bias self.place = ( paddle.CPUPlace() if place == "cpu" else paddle.CUDAPlace(0) ) def setUp(self): rnn1 = LSTMCell(16, 32, bias=self.bias) mp = paddle.static.Program() sp = paddle.static.Program() with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): rnn2 = paddle.nn.LSTMCell( 16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias ) place = self.place exe = paddle.static.Executor(place) scope = paddle.fluid.Scope() with paddle.static.scope_guard(scope): exe.run(sp) convert_params_for_cell_static(rnn1, rnn2, place) self.mp = mp self.sp = sp self.rnn1 = rnn1 self.rnn2 = rnn2 self.place = place self.executor = exe self.scope = scope def test_with_initial_state(self): mp = self.mp.clone() sp = self.sp rnn1 = self.rnn1 rnn2 = self.rnn2 exe = self.executor scope = self.scope x = np.random.randn(4, 16) prev_h = np.random.randn(4, 32) prev_c = np.random.randn(4, 32) y1, (h1, c1) = rnn1(x, (prev_h, prev_c)) with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): x_data = paddle.static.data( "input", [-1, 16], dtype=paddle.framework.get_default_dtype(), ) init_h = paddle.static.data( "init_h", [-1, 32], dtype=paddle.framework.get_default_dtype(), ) init_c = paddle.static.data( "init_c", [-1, 32], dtype=paddle.framework.get_default_dtype(), ) y, (h, c) = rnn2(x_data, (init_h, init_c)) feed_dict = {x_data.name: x, init_h.name: prev_h, init_c.name: prev_c} with paddle.static.scope_guard(scope): y2, h2, c2 = exe.run(mp, feed=feed_dict, fetch_list=[y, h, c]) np.testing.assert_allclose(h1, h2, atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2, atol=1e-8, rtol=1e-5) def test_with_zero_state(self): mp = self.mp.clone() sp = self.sp rnn1 = self.rnn1 rnn2 = self.rnn2 exe = self.executor scope = self.scope x = np.random.randn(4, 16) y1, (h1, c1) = rnn1(x) with paddle.fluid.unique_name.guard(): with paddle.static.program_guard(mp, sp): x_data = paddle.static.data( "input", [-1, 16], dtype=paddle.framework.get_default_dtype(), ) y, (h, c) = rnn2(x_data) feed_dict = {x_data.name: x} with paddle.static.scope_guard(scope): y2, h2, c2 = exe.run( mp, feed=feed_dict, fetch_list=[y, h, c], use_prune=True ) np.testing.assert_allclose(h1, h2, atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2, atol=1e-8, rtol=1e-5) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() def load_tests(loader, tests, pattern): suite = unittest.TestSuite() devices = ( ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() else ["cpu"] ) for bias in [True, False]: for device in devices: for test_class in [TestSimpleRNNCell, TestGRUCell, TestLSTMCell]: suite.addTest(test_class(bias, device)) return suite