# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle paddle.framework.set_default_dtype("float64") import unittest import numpy as np from convert import convert_params_for_cell from rnn_numpy import GRUCell, LSTMCell, SimpleRNNCell class TestSimpleRNNCell(unittest.TestCase): def __init__(self, bias=True, place="cpu"): super().__init__(methodName="runTest") self.bias = bias self.place = ( paddle.CPUPlace() if place == "cpu" else paddle.CUDAPlace(0) ) def setUp(self): paddle.disable_static(self.place) rnn1 = SimpleRNNCell(16, 32, bias=self.bias) rnn2 = paddle.nn.SimpleRNNCell( 16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias ) convert_params_for_cell(rnn1, rnn2) self.rnn1 = rnn1 self.rnn2 = rnn2 def test_with_initial_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(4, 16) prev_h = np.random.randn(4, 32) y1, h1 = rnn1(x, prev_h) y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h)) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_with_zero_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(4, 16) y1, h1 = rnn1(x) y2, h2 = rnn2(paddle.to_tensor(x)) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_errors(self): def test_zero_hidden_size(): cell = paddle.nn.SimpleRNNCell(-1, 0) self.assertRaises(ValueError, test_zero_hidden_size) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() self.test_errors() class TestGRUCell(unittest.TestCase): def __init__(self, bias=True, place="cpu"): super().__init__(methodName="runTest") self.bias = bias self.place = ( paddle.CPUPlace() if place == "cpu" else paddle.CUDAPlace(0) ) def setUp(self): paddle.disable_static(self.place) rnn1 = GRUCell(16, 32, bias=self.bias) rnn2 = paddle.nn.GRUCell( 16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias ) convert_params_for_cell(rnn1, rnn2) self.rnn1 = rnn1 self.rnn2 = rnn2 def test_with_initial_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(4, 16) prev_h = np.random.randn(4, 32) y1, h1 = rnn1(x, prev_h) y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h)) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_with_zero_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(4, 16) y1, h1 = rnn1(x) y2, h2 = rnn2(paddle.to_tensor(x)) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_errors(self): def test_zero_hidden_size(): cell = paddle.nn.GRUCell(-1, 0) self.assertRaises(ValueError, test_zero_hidden_size) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() self.test_errors() class TestLSTMCell(unittest.TestCase): def __init__(self, bias=True, place="cpu"): super().__init__(methodName="runTest") self.bias = bias self.place = ( paddle.CPUPlace() if place == "cpu" else paddle.CUDAPlace(0) ) def setUp(self): rnn1 = LSTMCell(16, 32, bias=self.bias) rnn2 = paddle.nn.LSTMCell( 16, 32, bias_ih_attr=self.bias, bias_hh_attr=self.bias ) convert_params_for_cell(rnn1, rnn2) self.rnn1 = rnn1 self.rnn2 = rnn2 def test_with_initial_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(4, 16) prev_h = np.random.randn(4, 32) prev_c = np.random.randn(4, 32) y1, (h1, c1) = rnn1(x, (prev_h, prev_c)) y2, (h2, c2) = rnn2( paddle.to_tensor(x), (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c)), ) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5) def test_with_zero_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(4, 16) y1, (h1, c1) = rnn1(x) y2, (h2, c2) = rnn2(paddle.to_tensor(x)) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5) def test_errors(self): def test_zero_hidden_size(): cell = paddle.nn.LSTMCell(-1, 0) self.assertRaises(ValueError, test_zero_hidden_size) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() self.test_errors() def load_tests(loader, tests, pattern): suite = unittest.TestSuite() devices = ( ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() else ["cpu"] ) for bias in [True, False]: for device in devices: for test_class in [TestSimpleRNNCell, TestGRUCell, TestLSTMCell]: suite.addTest(test_class(bias, device)) return suite