# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from decorator_helper import prog_scope from eager_op_test import OpTest, skip_check_grad_ci from gradient_checker import grad_check import paddle from paddle import fluid from paddle.fluid import core @skip_check_grad_ci( reason="The input of cholesky_op should always be symmetric positive-definite. " "However, OpTest calculates the numeric gradient of each element in input " "via small finite difference, which makes the input no longer symmetric " "positive-definite thus can not compute the Cholesky decomposition. " "While we can use the gradient_checker.grad_check to perform gradient " "check of cholesky_op, since it supports check gradient with a program " "and we can construct symmetric positive-definite matrices in the program" ) class TestCholeskyOp(OpTest): def setUp(self): self.op_type = "cholesky" self.python_api = paddle.cholesky self._input_shape = (2, 32, 32) self._upper = True self.init_config() self.trans_dims = list(range(len(self._input_shape) - 2)) + [ len(self._input_shape) - 1, len(self._input_shape) - 2, ] self.root_data = np.random.random(self._input_shape).astype("float64") # construct symmetric positive-definite matrice input_data = ( np.matmul(self.root_data, self.root_data.transpose(self.trans_dims)) + 1e-05 ) output_data = np.linalg.cholesky(input_data).astype("float64") if self._upper: output_data = output_data.transpose(self.trans_dims) self.inputs = {"X": input_data} self.attrs = {"upper": self._upper} self.outputs = {"Out": output_data} def test_check_output(self): self.check_output() def test_check_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda() and (not core.is_compiled_with_rocm()): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) @prog_scope() def func(self, place): # use small size since Jacobian gradients is time consuming root_data = self.root_data[..., :3, :3] prog = fluid.Program() with fluid.program_guard(prog): root = paddle.create_parameter( dtype=root_data.dtype, shape=root_data.shape ) root_t = paddle.transpose(root, self.trans_dims) x = paddle.matmul(x=root, y=root_t) + 1e-05 out = paddle.cholesky(x, upper=self.attrs["upper"]) grad_check(root, out, x_init=root_data, place=place) def init_config(self): self._upper = True class TestCholeskyOpLower(TestCholeskyOp): def init_config(self): self._upper = False class TestCholeskyOp2D(TestCholeskyOp): def init_config(self): self._input_shape = (32, 32) class TestDygraph(unittest.TestCase): def test_dygraph(self): if core.is_compiled_with_rocm(): paddle.disable_static(place=fluid.CPUPlace()) else: paddle.disable_static() a = np.random.rand(3, 3) a_t = np.transpose(a, [1, 0]) x_data = np.matmul(a, a_t) + 1e-03 x = paddle.to_tensor([x_data]) out = paddle.cholesky(x, upper=False) class TestCholeskySingularAPI(unittest.TestCase): def setUp(self): self.places = [fluid.CPUPlace()] if core.is_compiled_with_cuda() and (not core.is_compiled_with_rocm()): self.places.append(fluid.CUDAPlace(0)) def check_static_result(self, place, with_out=False): with fluid.program_guard(fluid.Program(), fluid.Program()): input = paddle.static.data( name="input", shape=[4, 4], dtype="float64" ) result = paddle.cholesky(input) input_np = np.zeros([4, 4]).astype("float64") exe = fluid.Executor(place) try: fetches = exe.run( fluid.default_main_program(), feed={"input": input_np}, fetch_list=[result], ) except RuntimeError as ex: print("The mat is singular") except ValueError as ex: print("The mat is singular") def test_static(self): for place in self.places: self.check_static_result(place=place) def test_dygraph(self): for place in self.places: with fluid.dygraph.guard(place): input_np = np.array( [ [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], ] ).astype("float64") input = fluid.dygraph.to_variable(input_np) try: result = paddle.cholesky(input) except RuntimeError as ex: print("The mat is singular") except ValueError as ex: print("The mat is singular") if __name__ == "__main__": paddle.enable_static() unittest.main()