# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """Definition of Server and Worker.""" # NOTE: reduce removed in fuctools in python3 from functools import reduce from . import ps_pb2 as pslib class Server: """ A Server basic class it's a base class, does not have implementation """ def __init__(self): pass class Worker: """ A Worker basic class. it's a base class, does not have implementation """ def __init__(self): pass class DownpourServer(Server): """ DownpourServer class is used to generate server program_desc Args: server: it is pslib.ServerParameter() Examples: server = DownpourServer() """ def __init__(self): self._server = pslib.ServerParameter() self._server.downpour_server_param.service_param.server_class = ( "DownpourBrpcPsServer" ) self._server.downpour_server_param.service_param.client_class = ( "DownpourBrpcPsClient" ) self._server.downpour_server_param.service_param.service_class = ( "DownpourPsService" ) self._server.downpour_server_param.service_param.start_server_port = 0 self._server.downpour_server_param.service_param.server_thread_num = 12 def add_sparse_table(self, table_id, strategy): """ Args: table_id(int): id of sparse params table strategy(dict): the config dict. Returns: return None """ for table in self._server.downpour_server_param.downpour_table_param: if table.table_id == table_id: if table.type == pslib.PS_SPARSE_TABLE: return else: raise ValueError( "expect table %s type=%s, but actual type=%s" % (table_id, pslib.PS_SPARSE_TABLE, table.type) ) if strategy is None: strategy = dict() table = self._server.downpour_server_param.downpour_table_param.add() table.table_id = table_id table.type = pslib.PS_SPARSE_TABLE support_sparse_key_list = [ 'sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', 'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', 'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', 'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', 'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', 'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', 'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', 'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold', 'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', 'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', 'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', 'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', 'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate', ] for key in strategy: if key not in support_sparse_key_list: raise ValueError("strategy key '%s' not support" % (key)) support_table_calss = ['DownpourSparseTable', 'DownpourSparseSSDTable'] if strategy.get('sparse_table_class') is not None: table_class = strategy.get('sparse_table_class') if table_class not in support_table_calss: raise ValueError( "support sparse_table_class: [ 'DownpourSparseTable', 'DownpourSparseSSDTable'], \ but actual %s" % (table_class) ) else: table_class = 'DownpourSparseTable' table.table_class = table_class if ( table_class == 'DownpourSparseTable' or table_class == 'DownpourSparseSSDTable' ): table.enable_sparse_table_cache = strategy.get( 'sparse_enable_cache', True ) table.sparse_table_cache_rate = strategy.get( 'sparse_cache_rate', 0.00055 ) table.sparse_table_cache_file_num = strategy.get( 'sparse_cache_file_num', 16 ) table.compress_in_save = strategy.get( 'sparse_compress_in_save', True ) table.shard_num = strategy.get('sparse_shard_num', 1000) # DownpourFeatureValueAccessor: for ctr task, has cvm, embedding and sgd info # DownpourCtrAccessor : for ctr task, has cvm, slot, embedding and sgd info # DownpourSparseValueAccessor : for general task, has embedding and sgd info # DownpourCtrDoubleAccessor : for ctr task, which show clk are in double # DownpourUnitAccessor : for ctr task, has cvm, slot, embedding and sgd info support_accessor_class = [ 'DownpourFeatureValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDymfAccessor', 'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor', ] if strategy.get('sparse_accessor_class') is not None: accessor_class = strategy.get('sparse_accessor_class') if accessor_class not in support_accessor_class: raise ValueError( "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDymfAccessor', \ 'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor'], \ but actual %s" % (accessor_class) ) else: accessor_class = 'DownpourCtrAccessor' table.accessor.accessor_class = accessor_class if ( accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDymfAccessor' or accessor_class == 'DownpourCtrDoubleAccessor' ): table.accessor.sparse_sgd_param.learning_rate = strategy.get( 'sparse_learning_rate', 0.05 ) table.accessor.sparse_sgd_param.initial_g2sum = strategy.get( 'sparse_initial_g2sum', 3 ) table.accessor.sparse_sgd_param.initial_range = strategy.get( 'sparse_initial_range', 1e-4 ) if strategy.get('sparse_weight_bounds') is None: table.accessor.sparse_sgd_param.weight_bounds.extend( [-10, 10] ) else: table.accessor.sparse_sgd_param.weight_bounds.extend( strategy.get('sparse_weight_bounds') ) table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8) table.accessor.embedx_threshold = strategy.get( 'sparse_embedx_threshold', 10 ) table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3 table.accessor.downpour_accessor_param.nonclk_coeff = ( strategy.get('sparse_nonclk_coeff', 0.1) ) table.accessor.downpour_accessor_param.click_coeff = ( strategy.get('sparse_click_coeff', 1) ) table.accessor.downpour_accessor_param.base_threshold = ( strategy.get('sparse_base_threshold', 1.5) ) table.accessor.downpour_accessor_param.delta_threshold = ( strategy.get('sparse_delta_threshold', 0.25) ) table.accessor.downpour_accessor_param.delta_keep_days = ( strategy.get('sparse_delta_keep_days', 16) ) table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get( 'sparse_delete_after_unseen_days', 30 ) table.accessor.downpour_accessor_param.ssd_unseenday_threshold = strategy.get( 'sparse_ssd_unseenday_threshold', 1 ) table.accessor.downpour_accessor_param.show_click_decay_rate = ( strategy.get('sparse_show_click_decay_rate', 0.98) ) table.accessor.downpour_accessor_param.delete_threshold = ( strategy.get('sparse_delete_threshold', 0.8) ) converter = strategy.get( 'sparse_converter', "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)", ) deconverter = strategy.get( 'sparse_deconverter', "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)", ) table1 = table.accessor.table_accessor_save_param.add() table1.param = 1 table1.converter = converter table1.deconverter = deconverter table2 = table.accessor.table_accessor_save_param.add() table2.param = 2 table2.converter = converter table2.deconverter = deconverter elif accessor_class == 'DownpourSparseValueAccessor': optimizer_name = strategy.get("sparse_optimizer", "adam") table.accessor.sparse_commonsgd_param.name = optimizer_name table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8) table.accessor.fea_dim = int(table.accessor.embedx_dim) if optimizer_name == "naive": table.accessor.sparse_commonsgd_param.naive.learning_rate = strategy.get( 'sparse_learning_rate', 0.05 ) table.accessor.sparse_commonsgd_param.naive.initial_range = strategy.get( 'sparse_initial_range', 1e-4 ) if strategy.get('sparse_weight_bounds') is None: table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend( [-10, 10] ) else: table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend( strategy.get('sparse_weight_bounds') ) elif optimizer_name == "adagrad": table.accessor.sparse_commonsgd_param.adagrad.learning_rate = strategy.get( 'sparse_learning_rate', 0.05 ) table.accessor.sparse_commonsgd_param.adagrad.initial_range = strategy.get( 'sparse_initial_range', 1e-4 ) table.accessor.sparse_commonsgd_param.adagrad.initial_g2sum = strategy.get( 'sparse_initial_g2sum', 3 ) if strategy.get('sparse_weight_bounds') is None: table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend( [-10, 10] ) else: table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend( strategy.get('sparse_weight_bounds') ) elif optimizer_name == "adam": table.accessor.sparse_commonsgd_param.adam.learning_rate = ( strategy.get('sparse_learning_rate', 0.001) ) table.accessor.sparse_commonsgd_param.adam.initial_range = ( strategy.get('sparse_initial_range', 1e-4) ) table.accessor.sparse_commonsgd_param.adam.beta1_decay_rate = strategy.get( 'sparse_beta1_decay_rate', 0.9 ) table.accessor.sparse_commonsgd_param.adam.beta2_decay_rate = strategy.get( 'sparse_beta2_decay_rate', 0.999 ) table.accessor.sparse_commonsgd_param.adam.ada_epsilon = ( strategy.get('sparse_ada_epsilon', 1e-8) ) if strategy.get('sparse_weight_bounds') is None: table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend( [-10, 10] ) else: table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend( strategy.get('sparse_weight_bounds') ) converter = strategy.get( 'sparse_converter', "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)", ) deconverter = strategy.get( 'sparse_deconverter', "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)", ) table1 = table.accessor.table_accessor_save_param.add() table1.param = 1 table1.converter = converter table1.deconverter = deconverter table2 = table.accessor.table_accessor_save_param.add() table2.param = 2 table2.converter = converter table2.deconverter = deconverter elif ( accessor_class == 'DownpourUnitAccessor' or accessor_class == 'DownpourDoubleUnitAccessor' ): self.add_sparse_table_common_config(table, strategy) self.add_sparse_optimizer( table.accessor.embed_sgd_param, strategy, "embed_" ) self.add_sparse_optimizer( table.accessor.embedx_sgd_param, strategy, "embedx_" ) def add_dense_table( self, table_id, param_var, grad_var, strategy, sparse_table_names ): """ Args: table_id(int): id of sparse params table param_var(list): param vars grad_var(list): param grad vars strategy(dict): the dense config dict sparse_table_names(list): sparse table names Returns: return None """ fea_dim = 0 dense_param_vars = [] for p in param_var: if p.name not in sparse_table_names: dense_param_vars.append(p) for param in dense_param_vars: fea_dim += reduce(lambda x, y: x * y, param.shape, 1) for table in self._server.downpour_server_param.downpour_table_param: if table.table_id == table_id: if table.type == pslib.PS_DENSE_TABLE: table.accessor.fea_dim = fea_dim return else: raise ValueError( "expect table %s type=%s, but actual type=%s" % (table_id, pslib.PS_DENSE_TABLE, table.type) ) if strategy is None: strategy = dict() table = self._server.downpour_server_param.downpour_table_param.add() table.table_id = table_id support_dense_key_list = [ 'dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', 'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', 'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr', ] for key in strategy: if key not in support_dense_key_list: raise ValueError("strategy key '%s' not support" % (key)) table.table_class = strategy.get( 'dense_table_class', "DownpourDenseTable" ) table.type = pslib.PS_DENSE_TABLE table.compress_in_save = strategy.get('dense_compress_in_save', True) table.accessor.accessor_class = strategy.get( 'dense_accessor_class', "DownpourDenseValueAccessor" ) table.accessor.dense_sgd_param.name = strategy.get( 'dense_optimizer', "adam" ) table.accessor.dense_sgd_param.adam.learning_rate = strategy.get( 'dense_learning_rate', 5e-06 ) table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get( 'dense_avg_decay', 0.999993 ) table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get( 'dense_ada_decay', 0.9999 ) table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get( 'dense_ada_epsilon', 1e-8 ) table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get( 'dense_mom_decay', 0.99 ) table.accessor.dense_sgd_param.naive.learning_rate = strategy.get( 'dense_naive_lr', 0.0002 ) table.accessor.fea_dim = fea_dim def add_data_norm_table( self, table_id, learning_rate, param_var, grad_var, strategy, sparse_table_names, ): """ Args: table_id(int): id of datanorm table learning_rate(float): the learning rate used to update parameters param_var(list): param vars grad_var(list): param grad vars strategy(dict): the datanorm config dict sparse_table_names(list): sparse table names Returns: return None """ fea_dim = 0 dense_param_vars = [] for p in param_var: if p.name not in sparse_table_names: dense_param_vars.append(p) for param in dense_param_vars: fea_dim += reduce(lambda x, y: x * y, param.shape, 1) for table in self._server.downpour_server_param.downpour_table_param: if table.table_id == table_id: if table.type == pslib.PS_DENSE_TABLE: table.accessor.fea_dim = fea_dim return else: raise ValueError( "expect table %s type=%s, but actual type=%s" % (table_id, pslib.PS_DENSE_TABLE, table.type) ) if strategy is None: strategy = dict() support_datanorm_key_list = [ 'datanorm_table_class', 'datanorm_compress_in_save', 'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate', ] for key in strategy: if key not in support_datanorm_key_list: raise ValueError("strategy key '%s' not support" % (key)) table = self._server.downpour_server_param.downpour_table_param.add() table.table_id = table_id table.table_class = strategy.get( 'datanorm_table_class', 'DownpourDenseTable' ) table.type = pslib.PS_DENSE_TABLE table.compress_in_save = strategy.get('datanorm_compress_in_save', True) table.accessor.accessor_class = strategy.get( 'datanorm_accessor_class', 'DownpourDenseValueAccessor' ) table.accessor.dense_sgd_param.name = strategy.get( 'datanorm_operation', 'summary' ) table.accessor.dense_sgd_param.summary.summary_decay_rate = ( strategy.get('datanorm_decay_rate', 0.999999) ) table.accessor.fea_dim = fea_dim def add_sparse_optimizer(self, sgd, strategy, prefix): optimizer_name = strategy.get(prefix + "sparse_optimizer", "adagrad") sgd.name = optimizer_name if optimizer_name == "naive": sgd.naive.learning_rate = strategy.get( prefix + 'sparse_learning_rate', 0.05 ) sgd.naive.initial_range = strategy.get( prefix + 'sparse_initial_range', 1e-4 ) bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10]) sgd.naive.weight_bounds.extend(bounds) elif optimizer_name == "adagrad": sgd.adagrad.learning_rate = strategy.get( prefix + 'sparse_learning_rate', 0.05 ) sgd.adagrad.initial_range = strategy.get( prefix + 'sparse_initial_range', 1e-4 ) if prefix == "embed_": sgd.adagrad.initial_range = 0 sgd.adagrad.initial_g2sum = strategy.get( prefix + 'sparse_initial_g2sum', 3 ) bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10]) sgd.adagrad.weight_bounds.extend(bounds) elif optimizer_name == "std_adagrad": sgd.adagrad.learning_rate = strategy.get( prefix + 'sparse_learning_rate', 0.05 ) sgd.adagrad.initial_range = strategy.get( prefix + 'sparse_initial_range', 1e-4 ) if prefix == "embed_": sgd.adagrad.initial_range = 0 sgd.adagrad.initial_g2sum = strategy.get( prefix + 'sparse_initial_g2sum', 3 ) bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10]) sgd.adagrad.weight_bounds.extend(bounds) elif optimizer_name == "adam": sgd.adam.learning_rate = strategy.get( prefix + 'sparse_learning_rate', 0.001 ) sgd.adam.initial_range = strategy.get( prefix + 'sparse_initial_range', 1e-4 ) sgd.adam.beta1_decay_rate = strategy.get( prefix + 'sparse_beta1_decay_rate', 0.9 ) sgd.adam.beta2_decay_rate = strategy.get( prefix + 'sparse_beta2_decay_rate', 0.999 ) sgd.adam.ada_epsilon = strategy.get( prefix + 'sparse_ada_epsilon', 1e-8 ) bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10]) sgd.adam.weight_bounds.extend(bounds) def add_sparse_table_common_config(self, table, strategy): table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8) table.accessor.embedx_threshold = strategy.get( 'sparse_embedx_threshold', 10 ) table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3 table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get( 'sparse_nonclk_coeff', 0.1 ) table.accessor.downpour_accessor_param.click_coeff = strategy.get( 'sparse_click_coeff', 1 ) table.accessor.downpour_accessor_param.base_threshold = strategy.get( 'sparse_base_threshold', 1.5 ) table.accessor.downpour_accessor_param.delta_threshold = strategy.get( 'sparse_delta_threshold', 0.25 ) table.accessor.downpour_accessor_param.delta_keep_days = strategy.get( 'sparse_delta_keep_days', 16 ) table.accessor.downpour_accessor_param.delete_after_unseen_days = ( strategy.get('sparse_delete_after_unseen_days', 30) ) table.accessor.downpour_accessor_param.show_click_decay_rate = ( strategy.get('sparse_show_click_decay_rate', 0.98) ) table.accessor.downpour_accessor_param.delete_threshold = strategy.get( 'sparse_delete_threshold', 0.8 ) converter = strategy.get( 'sparse_converter', "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)", ) deconverter = strategy.get( 'sparse_deconverter', "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)", ) table1 = table.accessor.table_accessor_save_param.add() table1.param = 1 table1.converter = converter table1.deconverter = deconverter table2 = table.accessor.table_accessor_save_param.add() table2.param = 2 table2.converter = converter table2.deconverter = deconverter def get_desc(self): """ Return downpour server program_desc """ return self._server class DownpourWorker(Worker): """ DownpourWorker class is used to generate worker program_desc Args: window (int): push params frequency worker: it is pslib.DownpourTrainerParameter Examples: worker = DownpourWorker(1) """ def __init__(self, window): self.window = window self._worker = pslib.DownpourTrainerParameter() def add_sparse_table( self, table_id, slot_key_vars, slot_value_vars, slot_value_grads=None ): """ Args: table_id(int): id of sparse params table slot_key_vars(list): slot key id slot_value_vars(list): slot key value after embedding slot_value_grads(list): grad of all params, default is None Returns: return None """ if slot_value_grads is None: slot_value_grad_names = [ var.name + "@GRAD" for var in slot_value_vars ] else: value_to_key = {} for i in range(len(slot_key_vars)): value_to_key[slot_value_vars[i].name] = slot_key_vars[i] slot_value_grad_names = [] all_grad_names = [var.name for var in slot_value_grads] for var in slot_value_vars: if var.name + "@GRAD" in all_grad_names: slot_value_grad_names.append(var.name + "@GRAD") sorted_slot_value_vars = [ i for i in slot_value_vars if i.name + "@GRAD" in slot_value_grad_names ] sorted_slot_value_vars += [ i for i in slot_value_vars if i.name + "@GRAD" not in slot_value_grad_names ] sorted_slot_key_vars = [ value_to_key[v.name] for v in sorted_slot_value_vars ] target_table = None for table in self._worker.sparse_table: if table.table_id == table_id: keys = table.slot_key key_names = [var.name for var in sorted_slot_key_vars] for key_name in key_names: if key_name not in keys: raise ValueError( "sparse table %s slot_key error" % table_id ) target_table = table break table = target_table if table is not None: self._worker.sparse_table.remove(table) table = self._worker.sparse_table.add() table.table_id = table_id table.slot_key.extend([var.name for var in sorted_slot_key_vars]) table.slot_value.extend([var.name for var in sorted_slot_value_vars]) table.slot_gradient.extend(slot_value_grad_names) def add_dense_table( self, table_id, learning_rate, param_vars, grad_vars, dense_start_table_id, sparse_table_names, ): r""" Args: table_id(int): id of sparse params table learning_rate(float): the learning rate used to update parameters. \ Can be a float value param_vars(list): all dense param. it is a list. grad_vars(list): all dense grad parm it is a list. dense_start_table_id(int): dense table start index sparse_table_names(list): sparse table names Returns: return None """ sparse_table_name_grad = [] for name in sparse_table_names: sparse_table_name_grad.append(name + "@GRAD") dense_param_name = [] for p in param_vars: if p.name not in sparse_table_names: dense_param_name.append(p.name) dense_grad_name = [] for g in grad_vars: if g.name not in sparse_table_name_grad: dense_grad_name.append(g.name) dense_param_name.sort() dense_grad_name.sort() for table in self._worker.dense_table: if table.table_id == table_id: desc_dense_param_name = list(table.dense_variable_name) desc_dense_param_name.sort() if dense_param_name == desc_dense_param_name: desc_dense_grad_name = list( table.dense_gradient_variable_name ) desc_dense_grad_name.sort() if dense_grad_name == desc_dense_grad_name: return else: raise ValueError( "dense table %s dense_gradient_variable_name " "error" % table_id ) else: raise ValueError( "dense table %s dense_variable_name error" % table_id ) table = self._worker.dense_table.add() table.table_id = table_id # def cmp_fc(x, y): # if x.startswith("fc_") and y.startswith("fc_"): # index_x = x.find('.') # index_y = y.find('.') # if index_x > 0 and index_y > 0: # num_x = x[3:index_x] # num_y = y[3:index_y] # if num_x.isdigit() and num_y.isdigit(): # if int(num_x) < int(num_y): # return -1 # if int(num_x) > int(num_y): # return 1 # if x[index_x + 1] == 'w' and y[index_y + 1] == 'b': # return -1 # if x[index_x + 1] == 'b' and y[index_y + 1] == 'w': # return 1 # if x < y: # return -1 # else: # return 1 # table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc)) # table.dense_gradient_variable_name.extend( # sorted(dense_grad_name, cmp_fc)) table.dense_variable_name.extend(dense_param_name) table.dense_gradient_variable_name.extend(dense_grad_name) def get_desc(self): """ Return downpour worker program_desc """ return self._worker