/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include // NOLINT #include #include #include #include "paddle/phi/common/place.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/utils/rw_lock.h" namespace phi { class SelectedRowsImpl { /* * @brief We can use the SelectedRowsImpl structure to reproduce a sparse * table. * A sparse table is a key-value structure that the key is an `int64_t`, * and the value is a Tensor which the first dimension is 0. * You can use the following interface to operate the sparse table, and you * can find * some detail information from the comments of each interface: * * HasKey(key), whether the sparse table has the specified key. * Set(key, value), set a key-value pair into the sparse table. * Get(keys, value*), get value by given key list and apply it to the given * value pointer * with the specified offset. * */ public: SelectedRowsImpl(const std::vector& rows, const int64_t& height) : rows_(rows), height_(height) { value_.reset(new DenseTensor()); rwlock_.reset(new RWLock); } SelectedRowsImpl() { height_ = 0; value_.reset(new DenseTensor()); rwlock_.reset(new RWLock); } const DenseTensor& value() const { return *value_; } DenseTensor* mutable_value() { return value_.get(); } int64_t height() const { return height_; } void set_height(int64_t height) { height_ = height; } const std::vector& rows() const { return rows_; } std::vector* mutable_rows() { return &rows_; } void set_rows(const std::vector& rows) { rows_ = rows; } /* * @brief Get the index of key in rows * * @return -1 if the key does not exists. */ int64_t Index(int64_t key) const { auto it = std::find(rows_.begin(), rows_.end(), key); if (it == rows_.end()) { PADDLE_THROW(phi::errors::NotFound( "Input id (%lld) is not in current rows table.", key)); } return static_cast(std::distance(rows_.begin(), it)); } /* * @brief whether has the specified key in the table. * * @return true if the key is exists. */ bool HasKey(int64_t key) const; /* * @brief Get value by the key list. * Note!!! this interface is only used when selected_rows is used as * parameters * for distribute lookup table. * * @return a list of pair which contains the non-exists key and the index in * the value */ void Get(const DenseTensor& ids, DenseTensor* value, bool auto_grown = false, bool is_test = false); void* AllocateFrom(Allocator* allocator, DataType dtype, size_t requested_size = 0, bool fake_alloc = false); /* * @brief Get the index of the key from id_to_index_ map. If the key not * exist, * add the key into id_to_index_. * * Note!!! this interface is only used when selected_rows is used as * parameters * for distribute lookup table. * * @return index of the key. */ int64_t AutoGrownIndex(int64_t key, bool auto_grown, bool is_test = false); /* * @brief Get the index of the key from id_to_index_ map. */ inline int64_t GetIndexFromId(int64_t key) const { auto iter = id_to_index_.find(key); if (iter == id_to_index_.end()) { return -1; } else { return iter->second; } } void SyncIndex(); /* * @brief Get complete Dims before */ phi::DDim GetCompleteDims() const { std::vector dims = vectorize(value_->dims()); dims[0] = height_; return phi::make_ddim(dims); } /// \brief Returns the number of elements contained in tensor. /// \return The number of elements contained in tensor. int64_t numel() const { return value_->numel(); } /// \brief Returns the dims of the tensor. /// \return The dims of the tensor. const DDim& dims() const noexcept { return value_->dims(); } /// \brief Returns the data type of the tensor. /// \return The data type of the tensor. DataType dtype() const noexcept { return value_->dtype(); } void set_type(const DataType dtype) { value_->set_type(dtype); } /// \brief Returns the data layout of the tensor. /// \return The data layout of the tensor. DataLayout layout() const noexcept { return value_->layout(); } void set_layout(const DataLayout layout) { value_->set_layout(layout); } /// \brief Returns the data place of the tensor. /// \return The data place of the tensor. const Place& place() const { return value_->place(); } /// \brief Test whether the metadata is valid. /// \return Whether the metadata is valid. bool valid() const noexcept { return value_->valid(); } /// \brief Test whether the storage is allocated. /// return Whether the storage is allocated. bool initialized() const { return value_->initialized(); } private: // Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here. // SelectedRowsImpl are simply concated when adding together. Until a // SelectedRowsImpl add a Tensor, will the duplicate rows be handled. std::vector rows_; std::unordered_map id_to_index_; // should not be used when rows_ has duplicate member std::unique_ptr value_{nullptr}; int64_t height_; // height indicates the underline tensor's height std::unique_ptr rwlock_{nullptr}; }; } // namespace phi