// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/top_k_grad_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/top_k_function_cuda.h" namespace phi { template void TopkGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& indices, const DenseTensor& out_grad, const Scalar& k_scalar, int axis, bool largest, bool sorted, DenseTensor* x_grad) { const auto& in_dims = x.dims(); const auto& out_dims = indices.dims(); int k = k_scalar.to(); // get the real the axis and the k if (axis < 0) { axis += in_dims.size(); } const int& raw_height = in_dims[axis]; // allocate the cuda memory for the x_grad T* x_grad_data = dev_ctx.template Alloc(x_grad); const T* out_grad_data = out_grad.data(); const int64_t* indices_data = indices.data(); if (in_dims.size() == 0) { phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, x_grad); return; } int pre, n, post; phi::funcs::GetDims(in_dims, axis, &pre, &n, &post); // calcluate the block and grid num auto ComputeBlockSize = [](int col) { if (col > 512) return 1024; else if (col > 256 && col <= 512) return 512; else if (col > 128 && col <= 256) return 256; else if (col > 64 && col <= 128) return 128; else return 64; }; int block_size = ComputeBlockSize(post * k); int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); const int max_blocks = std::max(((max_threads - 1) / block_size + 1), 1); int grid_size = std::min(max_blocks, pre); // lanuch the cuda kernel to assign the grad phi::funcs::AssignGradWithAxis <<>>( out_grad_data, indices_data, x_grad_data, pre, post, n, k); } } // namespace phi PD_REGISTER_KERNEL(topk_grad, GPU, ALL_LAYOUT, phi::TopkGradKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {}