/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/phi/api/include/api.h" #include "paddle/phi/api/include/tensor_utils.h" #include "paddle/phi/core/kernel_registry.h" #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #include "paddle/phi/api/include/context_pool.h" #include "paddle/phi/backends/context_pool.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/common/memory_utils.h" #endif PD_DECLARE_KERNEL(pow, CPU, ALL_LAYOUT); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_DECLARE_KERNEL(pow, GPU, ALL_LAYOUT); #endif using paddle::from_blob; using phi::DataType; namespace paddle { phi::Place GetPlaceFromPtr(void* data); } // namespace paddle TEST(from_blob, CPU) { // 1. create data int64_t data[] = {4, 3, 2, 1}; // NOLINT ASSERT_EQ(paddle::GetPlaceFromPtr(data), phi::CPUPlace()); // 2. test API auto test_tesnor = from_blob(data, {1, 2, 2}, DataType::INT64); // 3. check result // 3.1 check tensor attributes ASSERT_EQ(test_tesnor.dims().size(), 3); ASSERT_EQ(test_tesnor.dims()[0], 1); ASSERT_EQ(test_tesnor.dims()[1], 2); ASSERT_EQ(test_tesnor.dims()[2], 2); ASSERT_EQ(test_tesnor.numel(), 4); ASSERT_EQ(test_tesnor.is_cpu(), true); ASSERT_EQ(test_tesnor.dtype(), DataType::INT64); ASSERT_EQ(test_tesnor.layout(), phi::DataLayout::NCHW); ASSERT_EQ(test_tesnor.is_dense_tensor(), true); // 3.2 check tensor values auto* test_tensor_data = test_tesnor.template data(); for (int64_t i = 0; i < 4; i++) { ASSERT_EQ(test_tensor_data[i], 4 - i); } // 3.3 check whether memory is shared ASSERT_EQ(data, test_tensor_data); // 3.4 test other API auto test_tensor_pow = paddle::experimental::pow(test_tesnor, 2); auto* test_tensor_pow_data = test_tensor_pow.template data(); for (int64_t i = 0; i < 4; i++) { ASSERT_EQ(test_tensor_pow_data[i], static_cast(std::pow(4 - i, 2))); } } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) using phi::memory_utils::Copy; TEST(GetPlaceFromPtr, GPU) { using paddle::GetPlaceFromPtr; float cpu_data[6]; auto cpu_data_place = GetPlaceFromPtr(cpu_data); ASSERT_EQ(cpu_data_place, phi::CPUPlace()); std::cout << "cpu_data_place: " << cpu_data_place << std::endl; float* gpu0_data = static_cast(paddle::GetAllocator(phi::GPUPlace(0)) ->Allocate(sizeof(cpu_data)) ->ptr()); auto gpu0_data_place = GetPlaceFromPtr(gpu0_data); ASSERT_EQ(gpu0_data_place, phi::GPUPlace(0)); std::cout << "gpu0_data_place: " << gpu0_data_place << std::endl; if (phi::backends::gpu::GetGPUDeviceCount() > 1) { float* gpu1_data = static_cast(paddle::GetAllocator(phi::GPUPlace(1)) ->Allocate(sizeof(cpu_data)) ->ptr()); auto gpu1_data_place = GetPlaceFromPtr(gpu1_data); ASSERT_EQ(gpu1_data_place, phi::GPUPlace(1)); std::cout << "gpu1_data_place: " << gpu1_data_place << std::endl; } } TEST(from_blob, GPU) { // 1. create data float cpu_data[6] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f}; phi::GPUPlace gpu0(0); phi::Allocator* allocator = paddle::GetAllocator(gpu0); auto gpu_allocation = allocator->Allocate(sizeof(cpu_data)); float* gpu_data = static_cast(gpu_allocation->ptr()); phi::DeviceContextPool& pool = phi::DeviceContextPool::Instance(); auto* ctx = reinterpret_cast(pool.Get(gpu0)); Copy(gpu0, gpu_data, phi::CPUPlace(), cpu_data, sizeof(cpu_data), ctx->stream()); // 2. test API auto gpu_tesnor = from_blob(gpu_data, {2, 3}, DataType::FLOAT32); // 3. check result // 3.1 check tensor attributes ASSERT_EQ(gpu_tesnor.dims().size(), 2); ASSERT_EQ(gpu_tesnor.dims()[0], 2); ASSERT_EQ(gpu_tesnor.dims()[1], 3); ASSERT_EQ(gpu_tesnor.numel(), 6); // ASSERT_EQ(gpu_tesnor.is_gpu(), true); ASSERT_EQ(gpu_tesnor.dtype(), DataType::FLOAT32); // 3.2 check tensor values auto* gpu_tesnor_data = gpu_tesnor.template data(); float gpu_tesnor_data_cpu[6]; Copy(phi::CPUPlace(), gpu_tesnor_data_cpu, gpu0, gpu_tesnor_data, sizeof(cpu_data), ctx->stream()); for (int64_t i = 0; i < 6; i++) { ASSERT_NEAR( gpu_tesnor_data_cpu[i], static_cast((i + 1) * 0.1f), 1e-5); } // 3.3 check whether memory is shared ASSERT_EQ(gpu_data, gpu_tesnor_data); // 3.4 test other API auto gpu_tesnor_pow = paddle::experimental::pow(gpu_tesnor, 2); auto* gpu_tesnor_pow_data = gpu_tesnor_pow.template data(); float gpu_tesnor_pow_data_cpu[6]; Copy(phi::CPUPlace(), gpu_tesnor_pow_data_cpu, gpu0, gpu_tesnor_pow_data, sizeof(cpu_data), ctx->stream()); for (int64_t i = 0; i < 6; i++) { ASSERT_NEAR(gpu_tesnor_pow_data_cpu[i], static_cast(std::pow(i + 1, 2) * 0.01f), 1e-5); } } #endif TEST(from_blob, Option) { // 1. create data auto data = new int64_t[8]; for (int64_t i = 0; i < 8; i++) { data[i] = i; } // 2. test Deleter and Layout int isdelete = 0; auto deleter = [&isdelete](void* data) { delete[] static_cast(data); isdelete++; }; { auto test_tesnor = from_blob(data, {1, 2, 2, 1}, DataType::INT64, phi::DataLayout::NHWC, phi::CPUPlace(), deleter); // check tensor attributes ASSERT_EQ(test_tesnor.layout(), phi::DataLayout::NHWC); // check layout // check deleter ASSERT_EQ(isdelete, 0); } ASSERT_EQ(isdelete, 1); }