/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/truncated_gaussian_random_op.h" namespace paddle { namespace operators { template class TruncatedGaussianRandomMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { float mean = context.Attr("mean"); float std = context.Attr("std"); auto* tensor = context.Output("Out"); tensor->mutable_data(context.GetPlace()); framework::Tensor cpu_tensor(tensor->dtype()); cpu_tensor.Resize(tensor->dims()); T* data_cpu = cpu_tensor.mutable_data(platform::CPUPlace()); std::uniform_real_distribution dist(std::numeric_limits::min(), 1.0); TruncatedNormal truncated_normal(mean, std); int64_t size = tensor->numel(); unsigned int seed = static_cast(context.Attr("seed")); auto engine = framework::GetCPURandomEngine(seed); for (int64_t i = 0; i < size; ++i) { data_cpu[i] = truncated_normal(dist(*engine)); } auto& dev_ctx = context.template device_context(); framework::TensorCopy(cpu_tensor, context.GetPlace(), dev_ctx, tensor); dev_ctx.Wait(); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_MLU_KERNEL(truncated_gaussian_random, ops::TruncatedGaussianRandomMLUKernel);