#include #include "adagrad_optimizer.h" namespace paddle { namespace optimizer { void AdagradOptimizer::Update(const Tensor* gradient) { num_sample_passed_ += 1; double learning_rate = lr_policy_->LearningRate(num_sample_passed_); Tensor& param = *parameter_; Tensor& accum_g = *accum_gradient_; const Tensor& grad = *gradient; for (size_t i = 0; i < param.size(); ++i) { accum_g[i] += grad[i] * grad[i]; param[i] += learning_rate * grad[i] / std::sqrt(accum_g[i] + epsilon_) + learning_rate * decay_ * param[i]; } } const char* AdagradOptimizer::SerializeState(int* state_len) { AdagradOptimizerState state; state.set_num_sample_passed(num_sample_passed_); std::string lr_str = this->lr_policy_->SerializeState(state_len); state.mutable_lr_state()->ParseFromString(lr_str); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*accum_gradient_, state.mutable_accum_gradient()); auto str = state.SerializeAsString(); *state_len += str.size(); return str.c_str(); } void AdagradOptimizer::DeserializeState(const std::string& str) { AdagradOptimizerState state; state.ParseFromString(str); auto lr_state = state.lr_state(); this->lr_policy_->DeserializeState(lr_state.SerializeAsString()); num_sample_passed_ = state.num_sample_passed(); ProtoToTensor(state.parameter(), parameter_); ProtoToTensor(state.accum_gradient(), accum_gradient_); } } // namespace optimizer } // namespace paddle