# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import op_test import unittest import numpy as np import paddle import paddle.fluid as fluid def create_test_not_equal_class(op_type, typename, callback): class Cls(op_test.OpTest): def setUp(self): x = np.random.random(size=(10, 7)).astype(typename) y = np.random.random(size=(10, 7)).astype(typename) z = callback(x, y) self.python_api = paddle.tensor.equal_all self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': z} self.op_type = op_type def test_output(self): self.check_output(check_eager=True) cls_name = "{0}_{1}_{2}".format(op_type, typename, 'not_equal_all') Cls.__name__ = cls_name globals()[cls_name] = Cls def create_test_not_shape_equal_class(op_type, typename, callback): class Cls(op_test.OpTest): def setUp(self): x = np.random.random(size=(10, 7)).astype(typename) y = np.random.random(size=(10)).astype(typename) z = callback(x, y) self.python_api = paddle.tensor.equal_all self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': z} self.op_type = op_type def test_output(self): self.check_output(check_eager=True) cls_name = "{0}_{1}_{2}".format(op_type, typename, 'not_shape_equal_all') Cls.__name__ = cls_name globals()[cls_name] = Cls def create_test_equal_class(op_type, typename, callback): class Cls(op_test.OpTest): def setUp(self): x = y = np.random.random(size=(10, 7)).astype(typename) z = callback(x, y) self.python_api = paddle.tensor.equal_all self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': z} self.op_type = op_type def test_output(self): self.check_output(check_eager=True) cls_name = "{0}_{1}_{2}".format(op_type, typename, 'equal_all') Cls.__name__ = cls_name globals()[cls_name] = Cls def create_test_dim1_class(op_type, typename, callback): class Cls(op_test.OpTest): def setUp(self): x = y = np.random.random(size=(1)).astype(typename) x = np.array([True, False, True]).astype(typename) x = np.array([False, False, True]).astype(typename) z = callback(x, y) self.python_api = paddle.tensor.equal_all self.inputs = {'X': x, 'Y': y} self.outputs = {'Out': z} self.op_type = op_type def test_output(self): self.check_output(check_eager=True) cls_name = "{0}_{1}_{2}".format(op_type, typename, 'equal_all') Cls.__name__ = cls_name globals()[cls_name] = Cls np_equal = lambda _x, _y: np.array(np.array_equal(_x, _y)) for _type_name in {'float32', 'float64', 'int32', 'int64', 'bool'}: create_test_not_equal_class('equal_all', _type_name, np_equal) create_test_equal_class('equal_all', _type_name, np_equal) create_test_dim1_class('equal_all', _type_name, np_equal) class TestEqualReduceAPI(unittest.TestCase): def test_name(self): x = fluid.layers.assign(np.array([3, 4], dtype="int32")) y = fluid.layers.assign(np.array([3, 4], dtype="int32")) out = paddle.equal_all(x, y, name='equal_res') assert 'equal_res' in out.name def test_dynamic_api(self): paddle.disable_static() x = paddle.ones(shape=[10, 10], dtype="int32") y = paddle.ones(shape=[10, 10], dtype="int32") out = paddle.equal_all(x, y) assert out.numpy()[0] is np.True_ paddle.enable_static() if __name__ == '__main__': unittest.main()