#include "serialization.h" #include "sgd_optimizer.h" namespace paddle { namespace optimizer { void SGDOptimizer::set_weight(Tensor *p) { parameter_ = p; if (momentum_ != 0.0) { size_t size = p->size(); // TODO: fix it with align aware allocator bind to Tensor momentums_ = new Tensor(size); } } void SGDOptimizer::Update(const Tensor *gradient) { num_sample_passed_ += 1; double learning_rate = lr_policy_->LearningRate(num_sample_passed_); real velocity = 0.0; Tensor ¶m = *parameter_; const Tensor &grad = *gradient; Tensor &m = *momentums_; for (size_t i = 0; i < param.size(); ++i) { if (momentum_ == 0.0) { velocity = -learning_rate * grad[i] - learning_rate * decay_ * param[i]; } else { m[i] = momentum_ * m[i] - learning_rate * grad[i] - learning_rate * decay_ * param[i]; velocity = m[i]; } if (nesterov_) { param[i] += momentum_ * velocity - learning_rate * grad[i]; } else { param[i] += velocity; } } } const char *SGDOptimizer::SerializeState() { OptimizerState state; // version is a global const value state.set_version(kOptimizerVersion); TensorToProto(*parameter_, state.add_data()); TensorToProto(*momentums_, state.add_data()); state.add_hyperparam(momentum_); return state.SerializeAsString().c_str(); } void SGDOptimizer::DeSerializeState(const std::string &str) { OptimizerState state; state.ParseFromString(str); CHECK(state.version() == kOptimizerVersion) << "error version of state" << "expected : " << kOptimizerVersion << "get : " << state.version(); ProtoToTensor(state.data(0), parameter_); if (state.data_size() == 2) { ProtoToTensor(state.data(1), momentums_); momentum_ = state.hyperparam(0); } } } // namespace optimizer } // namespace paddle