# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import collections import glob import hashlib import importlib.util import json import logging import os import re import subprocess import sys import sysconfig import textwrap import threading import warnings from contextlib import contextmanager from importlib import machinery from setuptools.command import bdist_egg try: from subprocess import DEVNULL # py3 except ImportError: DEVNULL = open(os.devnull, 'wb') from ...fluid import core from ...fluid.framework import OpProtoHolder from ...sysconfig import get_include, get_lib logger = logging.getLogger("utils.cpp_extension") logger.setLevel(logging.INFO) formatter = logging.Formatter(fmt='%(asctime)s - %(levelname)s - %(message)s') ch = logging.StreamHandler() ch.setFormatter(formatter) logger.addHandler(ch) OS_NAME = sys.platform IS_WINDOWS = OS_NAME.startswith('win') MSVC_COMPILE_FLAGS = [ '/MT', '/wd4819', '/wd4251', '/wd4244', '/wd4267', '/wd4275', '/wd4018', '/wd4190', '/EHsc', '/w', '/DGOOGLE_GLOG_DLL_DECL', '/DBOOST_HAS_STATIC_ASSERT', '/DNDEBUG', '/DPADDLE_USE_DSO', ] CLANG_COMPILE_FLAGS = [ '-fno-common', '-dynamic', '-DNDEBUG', '-g', '-fwrapv', '-O3', '-arch', 'x86_64', ] CLANG_LINK_FLAGS = [ '-dynamiclib', '-undefined', 'dynamic_lookup', '-arch', 'x86_64', ] MSVC_LINK_FLAGS = ['/MACHINE:X64'] if core.is_compiled_with_rocm(): COMMON_HIPCC_FLAGS = [ '-DPADDLE_WITH_HIP', '-DEIGEN_USE_GPU', '-DEIGEN_USE_HIP', ] else: COMMON_NVCC_FLAGS = ['-DPADDLE_WITH_CUDA', '-DEIGEN_USE_GPU'] GCC_MINI_VERSION = (5, 4, 0) MSVC_MINI_VERSION = (19, 0, 24215) # Give warning if using wrong compiler WRONG_COMPILER_WARNING = ''' ************************************* * Compiler Compatibility WARNING * ************************************* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Found that your compiler ({user_compiler}) is not compatible with the compiler built Paddle for this platform, which is {paddle_compiler} on {platform}. Please use {paddle_compiler} to compile your custom op. Or you may compile Paddle from source using {user_compiler}, and then also use it compile your custom op. See https://www.paddlepaddle.org.cn/documentation/docs/zh/install/compile/fromsource.html for help with compiling Paddle from source. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ''' # Give warning if used compiler version is incompatible ABI_INCOMPATIBILITY_WARNING = ''' ********************************** * ABI Compatibility WARNING * ********************************** !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Found that your compiler ({user_compiler} == {version}) may be ABI-incompatible with pre-installed Paddle! Please use compiler that is ABI-compatible with GCC >= 5.4 (Recommended 8.2). See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html for ABI Compatibility information !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ''' DEFAULT_OP_ATTR_NAMES = [ core.op_proto_and_checker_maker.kOpRoleAttrName(), core.op_proto_and_checker_maker.kOpRoleVarAttrName(), core.op_proto_and_checker_maker.kOpNameScopeAttrName(), core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(), core.op_proto_and_checker_maker.kOpDeviceAttrName(), core.op_proto_and_checker_maker.kOpWithQuantAttrName(), ] @contextmanager def bootstrap_context(): """ Context to manage how to write `__bootstrap__` code in .egg """ origin_write_stub = bdist_egg.write_stub bdist_egg.write_stub = custom_write_stub yield bdist_egg.write_stub = origin_write_stub def load_op_meta_info_and_register_op(lib_filename): core.load_op_meta_info_and_register_op(lib_filename) return OpProtoHolder.instance().update_op_proto() def custom_write_stub(resource, pyfile): """ Customized write_stub function to allow us to inject generated python api codes into egg python file. """ _stub_template = textwrap.dedent( """ {custom_api} import os import sys import types import paddle import importlib.util cur_dir = os.path.dirname(os.path.abspath(__file__)) so_path = os.path.join(cur_dir, "{resource}") def __bootstrap__(): assert os.path.exists(so_path) if os.name == 'nt' or sys.platform.startswith('darwin'): # Cpp Extension only support Linux now mod = types.ModuleType(__name__) else: try: spec = importlib.util.spec_from_file_location(__name__, so_path) assert spec is not None mod = importlib.util.module_from_spec(spec) assert isinstance(spec.loader, importlib.abc.Loader) spec.loader.exec_module(mod) except ImportError: mod = types.ModuleType(__name__) # load custom op shared library with abs path custom_ops = paddle.utils.cpp_extension.load_op_meta_info_and_register_op(so_path) for custom_ops in custom_ops: setattr(mod, custom_ops, eval(custom_ops)) __bootstrap__() """ ).lstrip() # NOTE: To avoid importing .so file instead of python file because they have same name, # we rename .so shared library to another name, see EasyInstallCommand. filename, ext = os.path.splitext(resource) resource = filename + "_pd_" + ext api_content = [] if CustomOpInfo.instance().empty(): print("Received len(custom_op) = 0, using cpp extension only") else: # Parse registering op information _, op_info = CustomOpInfo.instance().last() so_path = op_info.so_path new_custom_ops = load_op_meta_info_and_register_op(so_path) for op_name in new_custom_ops: api_content.append(_custom_api_content(op_name)) print( "Received len(custom_op) = %d, using custom operator" % len(new_custom_ops) ) with open(pyfile, 'w') as f: f.write( _stub_template.format( resource=resource, custom_api='\n\n'.join(api_content) ) ) OpInfo = collections.namedtuple('OpInfo', ['so_name', 'so_path']) class CustomOpInfo: """ A global Singleton map to record all compiled custom ops information. """ @classmethod def instance(cls): if not hasattr(cls, '_instance'): cls._instance = cls() return cls._instance def __init__(self): assert not hasattr( self.__class__, '_instance' ), 'Please use `instance()` to get CustomOpInfo object!' # NOTE(Aurelius84): Use OrderedDict to save more order information self.op_info_map = collections.OrderedDict() def add(self, op_name, so_name, so_path=None): self.op_info_map[op_name] = OpInfo(so_name, so_path) def last(self): """ Return the last inserted custom op info. """ assert len(self.op_info_map) > 0 return next(reversed(self.op_info_map.items())) def empty(self): if self.op_info_map: return False return True VersionFields = collections.namedtuple( 'VersionFields', [ 'sources', 'extra_compile_args', 'extra_link_args', 'library_dirs', 'runtime_library_dirs', 'include_dirs', 'define_macros', 'undef_macros', ], ) class VersionManager: def __init__(self, version_field): self.version_field = version_field self.version = self.hasher(version_field) def hasher(self, version_field): from paddle.utils import flatten md5 = hashlib.md5() for field in version_field._fields: elem = getattr(version_field, field) if not elem: continue if isinstance(elem, (list, tuple, dict)): flat_elem = flatten(elem) md5 = combine_hash(md5, tuple(flat_elem)) else: raise RuntimeError( "Support types with list, tuple and dict, but received {} with {}.".format( type(elem), elem ) ) return md5.hexdigest() @property def details(self): return self.version_field._asdict() def combine_hash(md5, value): """ Return new hash value. DO NOT use `hash()` because it doesn't generate stable value between different process. See https://stackoverflow.com/questions/27522626/hash-function-in-python-3-3-returns-different-results-between-sessions """ md5.update(repr(value).encode()) return md5 def clean_object_if_change_cflags(so_path, extension): """ If already compiling source before, we should check whether cflags have changed and delete the built object to re-compile the source even though source file content keeps unchanaged. """ def serialize(path, version_info): assert isinstance(version_info, dict) with open(path, 'w') as f: f.write(json.dumps(version_info, indent=4, sort_keys=True)) def deserialize(path): assert os.path.exists(path) with open(path, 'r') as f: content = f.read() return json.loads(content) # version file VERSION_FILE = "version.txt" base_dir = os.path.dirname(so_path) so_name = os.path.basename(so_path) version_file = os.path.join(base_dir, VERSION_FILE) # version info args = [getattr(extension, field, None) for field in VersionFields._fields] version_field = VersionFields._make(args) versioner = VersionManager(version_field) if os.path.exists(so_path) and os.path.exists(version_file): old_version_info = deserialize(version_file) so_version = old_version_info.get(so_name, None) # delete shared library file if version is changed to re-compile it. if so_version is not None and so_version != versioner.version: log_v( "Re-Compiling {}, because specified cflags have been changed. New signature {} has been saved into {}.".format( so_name, versioner.version, version_file ) ) os.remove(so_path) # update new version information new_version_info = versioner.details new_version_info[so_name] = versioner.version serialize(version_file, new_version_info) else: # If compile at first time, save compiling detail information for debug. if not os.path.exists(base_dir): os.makedirs(base_dir) details = versioner.details details[so_name] = versioner.version serialize(version_file, details) def prepare_unix_cudaflags(cflags): """ Prepare all necessary compiled flags for nvcc compiling CUDA files. """ if core.is_compiled_with_rocm(): cflags = ( COMMON_HIPCC_FLAGS + ['-Xcompiler', '-fPIC'] + cflags + get_rocm_arch_flags(cflags) ) else: cflags = ( COMMON_NVCC_FLAGS + [ '-ccbin', 'cc', '-Xcompiler', '-fPIC', '--expt-relaxed-constexpr', '-DNVCC', ] + cflags + get_cuda_arch_flags(cflags) ) return cflags def prepare_win_cudaflags(cflags): """ Prepare all necessary compiled flags for nvcc compiling CUDA files. """ cflags = COMMON_NVCC_FLAGS + ['-w'] + cflags + get_cuda_arch_flags(cflags) return cflags def add_std_without_repeat(cflags, compiler_type, use_std14=False): """ Append -std=c++11/14 in cflags if without specific it before. """ cpp_flag_prefix = '/std:' if compiler_type == 'msvc' else '-std=' if not any(cpp_flag_prefix in flag for flag in cflags): suffix = 'c++14' if use_std14 else 'c++11' cpp_flag = cpp_flag_prefix + suffix cflags.append(cpp_flag) def get_cuda_arch_flags(cflags): """ For an arch, say "6.1", the added compile flag will be ``-gencode=arch=compute_61,code=sm_61``. For an added "+PTX", an additional ``-gencode=arch=compute_xx,code=compute_xx`` is added. """ # TODO(Aurelius84): return [] def get_rocm_arch_flags(cflags): """ For ROCm platform, amdgpu target should be added for HIPCC. """ cflags = cflags + ['-fno-gpu-rdc', '-amdgpu-target=gfx906'] return cflags def _get_fluid_path(): """ Return installed fluid dir path. """ import paddle return os.path.join(os.path.dirname(paddle.__file__), 'fluid') def _get_core_name(): """ Return pybind DSO module name. """ ext_name = '.pyd' if IS_WINDOWS else '.so' return 'libpaddle' + ext_name def _get_lib_core_path(): """ Return real path of libcore_(no)avx.dylib on MacOS. """ raw_core_name = _get_core_name() lib_core_name = f"lib{raw_core_name[:-3]}.dylib" return os.path.join(_get_fluid_path(), lib_core_name) def _get_dll_core_path(): """ Return real path of libcore_(no)avx.dylib on Windows. """ raw_core_name = _get_core_name() dll_core_name = "libpaddle.dll" return os.path.join(_get_fluid_path(), dll_core_name) def _reset_so_rpath(so_path): """ NOTE(Aurelius84): Runtime path of libpaddle.so is modified into `@loader_path/../libs` in setup.py.in. While loading custom op, `@loader_path` is the dirname of custom op instead of `paddle/fluid`. So we modify `@loader_path` from custom dylib into `@rpath` to ensure dynamic loader find it correctly. Moreover, we will add `-rpath site-packages/paddle/fluid` while linking the dylib so that we don't need to set `LD_LIBRARY_PATH` any more. """ assert os.path.exists(so_path) if OS_NAME.startswith("darwin"): origin_runtime_path = "@loader_path/../libs/" rpath = f"@rpath/{_get_core_name()}" cmd = 'install_name_tool -change {} {} {}'.format( origin_runtime_path, rpath, so_path ) run_cmd(cmd) def _get_include_dirs_when_compiling(compile_dir): """ Get all include directories when compiling the PaddlePaddle source code. """ include_dirs_file = 'includes.txt' path = os.path.abspath(compile_dir) include_dirs_file = os.path.join(path, include_dirs_file) assert os.path.isfile(include_dirs_file), "File {} does not exist".format( include_dirs_file ) with open(include_dirs_file, 'r') as f: include_dirs = [line.strip() for line in f.readlines() if line.strip()] extra_dirs = ['paddle/fluid/platform'] all_include_dirs = list(include_dirs) for extra_dir in extra_dirs: for include_dir in include_dirs: d = os.path.join(include_dir, extra_dir) if os.path.isdir(d): all_include_dirs.append(d) all_include_dirs.append(path) all_include_dirs.sort() return all_include_dirs def normalize_extension_kwargs(kwargs, use_cuda=False): """ Normalize include_dirs, library_dir and other attributes in kwargs. """ assert isinstance(kwargs, dict) compile_include_dirs = [] # NOTE: the "_compile_dir" argument is not public to users. It is only # reserved for internal usage. We do not guarantee that this argument # is always valid in the future release versions. compile_dir = kwargs.get("_compile_dir", None) if compile_dir: compile_include_dirs = _get_include_dirs_when_compiling(compile_dir) # append necessary include dir path of paddle include_dirs = list(kwargs.get('include_dirs', [])) include_dirs.extend(compile_include_dirs) include_dirs.extend(find_paddle_includes(use_cuda)) include_dirs.extend(find_python_includes()) kwargs['include_dirs'] = include_dirs # append necessary lib path of paddle library_dirs = kwargs.get('library_dirs', []) library_dirs.extend(find_paddle_libraries(use_cuda)) kwargs['library_dirs'] = library_dirs # append compile flags and check settings of compiler extra_compile_args = kwargs.get('extra_compile_args', []) if isinstance(extra_compile_args, dict): for compiler in ['cxx', 'nvcc']: if compiler not in extra_compile_args: extra_compile_args[compiler] = [] if IS_WINDOWS: # TODO(zhouwei): may append compile flags in future pass # append link flags extra_link_args = kwargs.get('extra_link_args', []) extra_link_args.extend(MSVC_LINK_FLAGS) lib_core_name = create_sym_link_if_not_exist() extra_link_args.append(f'{lib_core_name}') if use_cuda: extra_link_args.extend(['cudadevrt.lib', 'cudart_static.lib']) kwargs['extra_link_args'] = extra_link_args else: # ----------------------- Linux Platform ----------------------- # extra_link_args = kwargs.get('extra_link_args', []) # On Linux, GCC support '-l:xxx.so' to specify the library name # without `lib` prefix. if OS_NAME.startswith('linux'): extra_link_args.append(f'-l:{_get_core_name()}') # ----------------------- MacOS Platform ----------------------- # else: # See _reset_so_rpath for details. extra_link_args.append(f'-Wl,-rpath,{_get_fluid_path()}') # On MacOS, ld don't support `-l:xx`, so we create a # liblibpaddle.dylib symbol link. lib_core_name = create_sym_link_if_not_exist() extra_link_args.append(f'-l{lib_core_name}') # ----------------------- -- END -- ----------------------- # add_compile_flag(extra_compile_args, ['-w']) # disable warning if use_cuda: if core.is_compiled_with_rocm(): extra_link_args.append('-lamdhip64') else: extra_link_args.append('-lcudart') kwargs['extra_link_args'] = extra_link_args # add runtime library dirs runtime_library_dirs = kwargs.get('runtime_library_dirs', []) runtime_library_dirs.extend(find_paddle_libraries(use_cuda)) kwargs['runtime_library_dirs'] = runtime_library_dirs if compile_dir is None: # Add this compile option to isolate fluid headers add_compile_flag(extra_compile_args, ['-DPADDLE_WITH_CUSTOM_KERNEL']) kwargs['extra_compile_args'] = extra_compile_args kwargs['language'] = 'c++' return kwargs def create_sym_link_if_not_exist(): """ Create soft symbol link of `libpaddle.so` """ assert OS_NAME.startswith('darwin') or IS_WINDOWS raw_core_name = _get_core_name() core_path = os.path.join(_get_fluid_path(), raw_core_name) if IS_WINDOWS: new_dll_core_path = _get_dll_core_path() # create symbol link on windows if not os.path.exists(new_dll_core_path): try: os.symlink(core_path, new_dll_core_path) except Exception: warnings.warn( "Failed to create soft symbol link for {}.\n You can run prompt as administrator and execute the " "following command manually: `mklink {} {}`. Now it will create hard link for {} trickly.".format( raw_core_name, new_dll_core_path, core_path, raw_core_name, ) ) run_cmd(f'mklink /H {new_dll_core_path} {core_path}') # libpaddle with lib suffix assert os.path.exists(new_dll_core_path) return raw_core_name[:-4] + ".lib" else: new_lib_core_path = _get_lib_core_path() # create symbol link on mac if not os.path.exists(new_lib_core_path): try: os.symlink(core_path, new_lib_core_path) assert os.path.exists(new_lib_core_path) except Exception: raise RuntimeError( "Failed to create soft symbol link for {}.\n Please execute the following command manually: `ln -s {} {}`".format( raw_core_name, core_path, new_lib_core_path ) ) # libpaddle without suffix return raw_core_name[:-3] def find_cuda_home(): """ Use heuristic method to find cuda path """ # step 1. find in $CUDA_HOME or $CUDA_PATH cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') # step 2. find path by `which nvcc` if cuda_home is None: which_cmd = 'where' if IS_WINDOWS else 'which' try: with open(os.devnull, 'w') as devnull: nvcc_path = subprocess.check_output( [which_cmd, 'nvcc'], stderr=devnull ) nvcc_path = nvcc_path.decode() # Multi CUDA, select the first nvcc_path = nvcc_path.split('\r\n')[0] # for example: /usr/local/cuda/bin/nvcc cuda_home = os.path.dirname(os.path.dirname(nvcc_path)) except: if IS_WINDOWS: # search from default NVIDIA GPU path candidate_paths = glob.glob( 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*.*' ) if len(candidate_paths) > 0: cuda_home = candidate_paths[0] else: cuda_home = "/usr/local/cuda" # step 3. check whether path is valid if ( cuda_home and not os.path.exists(cuda_home) and core.is_compiled_with_cuda() ): cuda_home = None return cuda_home def find_rocm_home(): """ Use heuristic method to find rocm path """ # step 1. find in $ROCM_HOME or $ROCM_PATH rocm_home = os.environ.get('ROCM_HOME') or os.environ.get('ROCM_PATH') # step 2. find path by `which nvcc` if rocm_home is None: which_cmd = 'where' if IS_WINDOWS else 'which' try: with open(os.devnull, 'w') as devnull: hipcc_path = subprocess.check_output( [which_cmd, 'hipcc'], stderr=devnull ) hipcc_path = hipcc_path.decode() hipcc_path = hipcc_path.rstrip('\r\n') # for example: /opt/rocm/bin/hipcc rocm_home = os.path.dirname(os.path.dirname(hipcc_path)) except: rocm_home = "/opt/rocm" # step 3. check whether path is valid if ( rocm_home and not os.path.exists(rocm_home) and core.is_compiled_with_rocm() ): rocm_home = None return rocm_home def find_cuda_includes(): """ Use heuristic method to find cuda include path """ cuda_home = find_cuda_home() if cuda_home is None: raise ValueError( "Not found CUDA runtime, please use `export CUDA_HOME=XXX` to specific it." ) return [os.path.join(cuda_home, 'include')] def find_rocm_includes(): """ Use heuristic method to find rocm include path """ rocm_home = find_rocm_home() if rocm_home is None: raise ValueError( "Not found ROCM runtime, please use `export ROCM_PATH= XXX` to specific it." ) return [os.path.join(rocm_home, 'include')] def find_paddle_includes(use_cuda=False): """ Return Paddle necessary include dir path. """ # pythonXX/site-packages/paddle/include paddle_include_dir = get_include() third_party_dir = os.path.join(paddle_include_dir, 'third_party') include_dirs = [paddle_include_dir, third_party_dir] if use_cuda: if core.is_compiled_with_rocm(): rocm_include_dir = find_rocm_includes() include_dirs.extend(rocm_include_dir) else: cuda_include_dir = find_cuda_includes() include_dirs.extend(cuda_include_dir) if OS_NAME.startswith('darwin'): # NOTE(Aurelius84): Ensure to find std v1 headers correctly. std_v1_includes = find_clang_cpp_include() if std_v1_includes is not None and os.path.exists(std_v1_includes): include_dirs.append(std_v1_includes) return include_dirs def find_python_includes(): """ Return necessary include dir path of Python.h. """ # sysconfig.get_path('include') gives us the location of Python.h # Explicitly specify 'posix_prefix' scheme on non-Windows platforms to workaround error on some MacOS # installations where default `get_path` points to non-existing `/Library/Python/M.m/include` folder python_include_path = sysconfig.get_path( 'include', scheme='nt' if IS_WINDOWS else 'posix_prefix' ) if python_include_path is not None: assert isinstance(python_include_path, str) return [python_include_path] return [] def find_clang_cpp_include(compiler='clang'): std_v1_includes = None try: compiler_version = subprocess.check_output([compiler, "--version"]) compiler_version = compiler_version.decode() infos = compiler_version.split("\n") for info in infos: if "InstalledDir" in info: v1_path = info.split(':')[-1].strip() if v1_path and os.path.exists(v1_path): std_v1_includes = os.path.join( os.path.dirname(v1_path), 'include/c++/v1' ) except Exception: # Just raise warnings because the include dir is not required. warnings.warn( "Failed to search `include/c++/v1/` include dirs. Don't worry because it's not required." ) return std_v1_includes def find_cuda_libraries(): """ Use heuristic method to find cuda static lib path """ cuda_home = find_cuda_home() if cuda_home is None: raise ValueError( "Not found CUDA runtime, please use `export CUDA_HOME=XXX` to specific it." ) if IS_WINDOWS: cuda_lib_dir = [os.path.join(cuda_home, 'lib', 'x64')] else: cuda_lib_dir = [os.path.join(cuda_home, 'lib64')] return cuda_lib_dir def find_rocm_libraries(): """ Use heuristic method to find rocm dynamic lib path """ rocm_home = find_rocm_home() if rocm_home is None: raise ValueError( "Not found ROCM runtime, please use `export ROCM_PATH=XXX` to specific it." ) rocm_lib_dir = [os.path.join(rocm_home, 'lib')] return rocm_lib_dir def find_paddle_libraries(use_cuda=False): """ Return Paddle necessary library dir path. """ # pythonXX/site-packages/paddle/libs paddle_lib_dirs = [get_lib()] if use_cuda: if core.is_compiled_with_rocm(): rocm_lib_dir = find_rocm_libraries() paddle_lib_dirs.extend(rocm_lib_dir) else: cuda_lib_dir = find_cuda_libraries() paddle_lib_dirs.extend(cuda_lib_dir) # add `paddle/fluid` to search `libpaddle.so` paddle_lib_dirs.append(_get_fluid_path()) return paddle_lib_dirs def add_compile_flag(extra_compile_args, flags): assert isinstance(flags, list) if isinstance(extra_compile_args, dict): for args in extra_compile_args.values(): args.extend(flags) else: extra_compile_args.extend(flags) def is_cuda_file(path): cuda_suffix = {'.cu'} items = os.path.splitext(path) assert len(items) > 1 return items[-1] in cuda_suffix def get_build_directory(verbose=False): """ Return paddle extension root directory to put shared library. It could be specified by ``export PADDLE_EXTENSION_DIR=XXX`` . If not set, ``~/.cache/paddle_extension`` will be used by default. Returns: The root directory of compiling customized operators. Examples: .. code-block:: python from paddle.utils.cpp_extension import get_build_directory build_dir = get_build_directory() print(build_dir) """ root_extensions_directory = os.environ.get('PADDLE_EXTENSION_DIR') if root_extensions_directory is None: dir_name = "paddle_extensions" root_extensions_directory = os.path.join( os.path.expanduser('~/.cache'), dir_name ) if IS_WINDOWS: root_extensions_directory = os.path.normpath( root_extensions_directory ) log_v( "$PADDLE_EXTENSION_DIR is not set, using path: {} by default.".format( root_extensions_directory ), verbose, ) if not os.path.exists(root_extensions_directory): os.makedirs(root_extensions_directory) return root_extensions_directory def parse_op_info(op_name): """ Parse input names and outpus detail information from registered custom op from OpInfoMap. """ if op_name not in OpProtoHolder.instance().op_proto_map: raise ValueError( "Please load {} shared library file firstly by `paddle.utils.cpp_extension.load_op_meta_info_and_register_op(...)`".format( op_name ) ) op_proto = OpProtoHolder.instance().get_op_proto(op_name) in_names = [x.name for x in op_proto.inputs] attr_names = [ x.name for x in op_proto.attrs if x.name not in DEFAULT_OP_ATTR_NAMES ] out_names = [x.name for x in op_proto.outputs] return in_names, attr_names, out_names def _import_module_from_library(module_name, build_directory, verbose=False): """ Load shared library and import it as callable python module. """ if IS_WINDOWS: dynamic_suffix = '.pyd' elif OS_NAME.startswith('darwin'): dynamic_suffix = '.dylib' else: dynamic_suffix = '.so' ext_path = os.path.join(build_directory, module_name + dynamic_suffix) if not os.path.exists(ext_path): raise FileNotFoundError(f"Extension path: {ext_path} does not exist.") # load custom op_info and kernels from .so shared library log_v(f'loading shared library from: {ext_path}', verbose) op_names = load_op_meta_info_and_register_op(ext_path) if os.name == 'nt' or sys.platform.startswith('darwin'): # Cpp Extension only support Linux now return _generate_python_module( module_name, op_names, build_directory, verbose ) try: spec = importlib.util.spec_from_file_location(module_name, ext_path) assert spec is not None module = importlib.util.module_from_spec(spec) assert isinstance(spec.loader, importlib.abc.Loader) spec.loader.exec_module(module) except ImportError: log_v('using custom operator only') return _generate_python_module( module_name, op_names, build_directory, verbose ) # generate Python api in ext_path op_module = _generate_python_module( module_name, op_names, build_directory, verbose ) for op_name in op_names: # Mix use of Cpp Extension and Custom Operator setattr(module, op_name, getattr(op_module, op_name)) return module def _generate_python_module( module_name, op_names, build_directory, verbose=False ): """ Automatically generate python file to allow import or load into as module """ def remove_if_exit(filepath): if os.path.exists(filepath): os.remove(filepath) # NOTE: Use unique id as suffix to avoid write same file at same time in # both multi-thread and multi-process. thread_id = str(threading.currentThread().ident) api_file = os.path.join( build_directory, module_name + '_' + thread_id + '.py' ) log_v(f"generate api file: {api_file}", verbose) # delete the temp file before exit python process atexit.register(lambda: remove_if_exit(api_file)) # write into .py file with RWLockc api_content = [_custom_api_content(op_name) for op_name in op_names] with open(api_file, 'w') as f: f.write('\n\n'.join(api_content)) # load module custom_module = _load_module_from_file(api_file, module_name, verbose) return custom_module def _gen_output_content( op_name, in_names, out_names, ins_map, attrs_map, inplace_reverse_idx ): # ' ' * tab space * tab number indent = ' ' * 4 * 2 inplace_idx = {v: k for k, v in inplace_reverse_idx.items()} dynamic_content = "" static_content = f""" {indent}ins = {{}} {indent}ins_map = {ins_map} {indent}for key, value in ins_map.items(): {indent} # handle optional inputs {indent} if value is not None: {indent} ins[key] = value {indent}helper = LayerHelper("{op_name}", **locals()) """ for out_idx, out_name in enumerate(out_names): in_idx = -1 if out_idx in inplace_reverse_idx: in_idx = inplace_reverse_idx[out_idx] if ( in_idx != -1 and "@VECTOR" in in_names[in_idx] and "@OPTIONAL" in in_names[in_idx] ): # inplace optional vector output case lower_in_names = in_names[in_idx].split("@")[0].lower() dynamic_content += f""" {indent}if {lower_in_names} is not None: {indent} outs['{out_name}'] = [core.eager.Tensor() for _ in range(len({lower_in_names}))] {indent}else: {indent} outs['{out_name}'] = core.eager.Tensor() {indent}ctx.add_outputs(outs['{out_name}'])""" static_content += f""" {indent}if {lower_in_names} is not None: {indent} outs['{out_name}'] = [helper.create_variable(dtype='float32') for _ in range(len({lower_in_names}))]""" elif ( in_idx != -1 and "@VECTOR" in in_names[in_idx] ): # inplace vector output case lower_in_names = in_names[in_idx].split("@")[0].lower() dynamic_content += f""" {indent}outs['{out_name}'] = [core.eager.Tensor() for _ in range(len({lower_in_names}))] {indent}ctx.add_outputs(outs['{out_name}'])""" static_content += f""" {indent}outs['{out_name}'] = [helper.create_variable(dtype='float32') for _ in range(len({lower_in_names}))]""" elif ( in_idx != -1 and "@OPTIONAL" in in_names[in_idx] ): # inplace optional Tensor output case, handle inplace None input lower_in_names = in_names[in_idx].split("@")[0].lower() dynamic_content += f""" {indent}outs['{out_name}'] = core.eager.Tensor() {indent}ctx.add_outputs(outs['{out_name}'])""" static_content += f""" {indent}if {lower_in_names} is not None: {indent} outs['{out_name}'] = helper.create_variable(dtype='float32')""" else: # general/inplace Tensor output case dynamic_content += f""" {indent}outs['{out_name}'] = core.eager.Tensor() {indent}ctx.add_outputs(outs['{out_name}'])""" static_content += f""" {indent}outs['{out_name}'] = helper.create_variable(dtype='float32')""" dynamic_content += f""" {indent}core.eager._run_custom_op(ctx, "{op_name}", True) {indent}res = [outs[out_name] if isinstance(outs[out_name], list) or outs[out_name]._is_initialized() else None for out_name in outs_list] {indent}return res[0] if len(res)==1 else res""" static_content += f""" {indent}helper.append_op(type="{op_name}", inputs=ins, outputs=outs, attrs={attrs_map}) {indent}res = [outs[out_name] if out_name in outs.keys() else None for out_name in outs_list] {indent}return res[0] if len(res)==1 else res""" return dynamic_content, static_content def _custom_api_content(op_name): ( params_list, ins_map, attrs_map, outs_list, in_names, attr_names, out_names, inplace_reverse_idx, ) = _get_api_inputs_str(op_name) dynamic_content, static_content = _gen_output_content( op_name, in_names, out_names, ins_map, attrs_map, inplace_reverse_idx, ) lower_in_list = [p.split("@")[0].lower() for p in in_names] API_TEMPLATE = textwrap.dedent( """ import paddle.fluid.core as core from paddle.fluid.core import Tensor, CustomOpKernelContext from paddle.fluid.framework import _dygraph_tracer, in_dygraph_mode from paddle.fluid.layer_helper import LayerHelper def {op_name}({params_list}): # prepare inputs and outputs outs = {{}} outs_list = {outs_list} # The output variable's dtype use default value 'float32', # and the actual dtype of output variable will be inferred in runtime. if in_dygraph_mode(): ctx = CustomOpKernelContext() for i in {in_names}: ctx.add_inputs(i) for j in {attr_names}: ctx.add_attr(j) {dynamic_content} else: {static_content} """ ).lstrip() # generate python api file api_content = API_TEMPLATE.format( op_name=op_name, params_list=params_list, ins_map=ins_map, attrs_map=attrs_map, # "[x, y, z]"" in_names="[" + ",".join(lower_in_list) + "]", attr_names="[" + ",".join(attr_names) + "]", outs_list=outs_list, dynamic_content=dynamic_content, static_content=static_content, ) return api_content def _load_module_from_file(api_file_path, module_name, verbose=False): """ Load module from python file. """ if not os.path.exists(api_file_path): raise FileNotFoundError(f"File : {api_file_path} does not exist.") # Unique readable module name to place custom api. log_v(f'import module from file: {api_file_path}', verbose) ext_name = "_paddle_cpp_extension_" + module_name # load module with RWLock loader = machinery.SourceFileLoader(ext_name, api_file_path) spec = importlib.util.spec_from_loader(loader.name, loader) module = importlib.util.module_from_spec(spec) loader.exec_module(module) return module def _get_api_inputs_str(op_name): """ Returns string of api parameters and inputs dict. """ in_names, attr_names, out_names = parse_op_info(op_name) # e.g: x, y, z param_names = in_names + attr_names # NOTE(chenweihang): we add suffix `@VECTOR` for std::vector input, # but the string contains `@` cannot used as argument name, so we split # input name by `@`, and only use first substr as argument params_list = ','.join([p.split("@")[0].lower() for p in param_names]) # e.g: {'X': x, 'Y': y, 'Z': z} ins_map = "{%s}" % ','.join( [ "'{}' : {}".format(in_name, in_name.split("@")[0].lower()) for in_name in in_names ] ) # e.g: {'num': n} attrs_map = "{%s}" % ",".join( [ "'{}' : {}".format(attr_name, attr_name.split("@")[0].lower()) for attr_name in attr_names ] ) # e.g: ['Out', 'Index'] outs_list = "[%s]" % ','.join([f"'{name}'" for name in out_names]) inplace_reverse_idx = core.eager._get_custom_operator_inplace_map(op_name) return ( params_list, ins_map, attrs_map, outs_list, in_names, attr_names, out_names, inplace_reverse_idx, ) def _write_setup_file( name, sources, file_path, build_dir, include_dirs, library_dirs, extra_cxx_cflags, extra_cuda_cflags, link_args, verbose=False, ): """ Automatically generate setup.py and write it into build directory. """ template = textwrap.dedent( """ import os from paddle.utils.cpp_extension import CppExtension, CUDAExtension, BuildExtension, setup from paddle.utils.cpp_extension import get_build_directory setup( name='{name}', ext_modules=[ {prefix}Extension( sources={sources}, include_dirs={include_dirs}, library_dirs={library_dirs}, extra_compile_args={{'cxx':{extra_cxx_cflags}, 'nvcc':{extra_cuda_cflags}}}, extra_link_args={extra_link_args})], cmdclass={{"build_ext" : BuildExtension.with_options( output_dir=r'{build_dir}', no_python_abi_suffix=True) }})""" ).lstrip() with_cuda = False if any([is_cuda_file(source) for source in sources]): with_cuda = True log_v(f"with_cuda: {with_cuda}", verbose) content = template.format( name=name, prefix='CUDA' if with_cuda else 'Cpp', sources=list2str(sources), include_dirs=list2str(include_dirs), library_dirs=list2str(library_dirs), extra_cxx_cflags=list2str(extra_cxx_cflags), extra_cuda_cflags=list2str(extra_cuda_cflags), extra_link_args=list2str(link_args), build_dir=build_dir, ) log_v(f'write setup.py into {file_path}', verbose) with open(file_path, 'w') as f: f.write(content) def list2str(args): """ Convert list[str] into string. For example: ['x', 'y'] -> "['x', 'y']" """ if args is None: return '[]' assert isinstance(args, (list, tuple)) args = [f"{arg}" for arg in args] return repr(args) def _jit_compile(file_path, verbose=False): """ Build shared library in subprocess """ ext_dir = os.path.dirname(file_path) setup_file = os.path.basename(file_path) # Using interpreter same with current process. interpreter = sys.executable try: py_version = subprocess.check_output([interpreter, '-V']) py_version = py_version.decode() log_v( "Using Python interpreter: {}, version: {}".format( interpreter, py_version.strip() ), verbose, ) except Exception: _, error, _ = sys.exc_info() raise RuntimeError( 'Failed to check Python interpreter with `{}`, errors: {}'.format( interpreter, error ) ) if IS_WINDOWS: compile_cmd = 'cd /d {} && {} {} build'.format( ext_dir, interpreter, setup_file ) else: compile_cmd = 'cd {} && {} {} build'.format( ext_dir, interpreter, setup_file ) print("Compiling user custom op, it will cost a few seconds.....") run_cmd(compile_cmd, verbose) def parse_op_name_from(sources): """ Parse registerring custom op name from sources. """ def regex(content): pattern = re.compile(r'PD_BUILD_OP\(([^,\)]+)\)') content = re.sub(r'\s|\t|\n', '', content) op_name = pattern.findall(content) op_name = {re.sub('_grad', '', name) for name in op_name} return op_name op_names = set() for source in sources: with open(source, 'r') as f: content = f.read() op_names |= regex(content) return list(op_names) def run_cmd(command, verbose=False): """ Execute command with subprocess. """ # logging log_v(f"execute command: {command}", verbose) # execute command try: if verbose: return subprocess.check_call( command, shell=True, stderr=subprocess.STDOUT ) else: return subprocess.check_call(command, shell=True, stdout=DEVNULL) except Exception: _, error, _ = sys.exc_info() raise RuntimeError(f"Failed to run command: {compile}, errors: {error}") def check_abi_compatibility(compiler, verbose=False): """ Check whether GCC version on user local machine is compatible with Paddle in site-packages. """ if os.environ.get('PADDLE_SKIP_CHECK_ABI') in ['True', 'true', '1']: return True if not IS_WINDOWS: cmd_out = subprocess.check_output( ['which', compiler], stderr=subprocess.STDOUT ) compiler_path = os.path.realpath(cmd_out.decode()).strip() # if not found any suitable compiler, raise warning if not any( name in compiler_path for name in _expected_compiler_current_platform() ): warnings.warn( WRONG_COMPILER_WARNING.format( user_compiler=compiler, paddle_compiler=_expected_compiler_current_platform()[0], platform=OS_NAME, ) ) return False version = (0, 0, 0) # clang++ have no ABI compatibility problem if OS_NAME.startswith('darwin'): return True try: if OS_NAME.startswith('linux'): mini_required_version = GCC_MINI_VERSION version_info = subprocess.check_output( [compiler, '-dumpfullversion', '-dumpversion'] ) version_info = version_info.decode() version = version_info.strip().split('.') elif IS_WINDOWS: mini_required_version = MSVC_MINI_VERSION compiler_info = subprocess.check_output( compiler, stderr=subprocess.STDOUT ) try: compiler_info = compiler_info.decode('UTF-8') except UnicodeDecodeError: compiler_info = compiler_info.decode('gbk') match = re.search(r'(\d+)\.(\d+)\.(\d+)', compiler_info.strip()) if match is not None: version = match.groups() except Exception: # check compiler version failed _, error, _ = sys.exc_info() warnings.warn( 'Failed to check compiler version for {}: {}'.format( compiler, error ) ) return False # check version compatibility assert len(version) == 3 if tuple(map(int, version)) >= mini_required_version: return True warnings.warn( ABI_INCOMPATIBILITY_WARNING.format( user_compiler=compiler, version='.'.join(version) ) ) return False def _expected_compiler_current_platform(): """ Returns supported compiler string on current platform """ if OS_NAME.startswith('darwin'): expect_compilers = ['clang', 'clang++'] elif OS_NAME.startswith('linux'): expect_compilers = ['gcc', 'g++', 'gnu-c++', 'gnu-cc'] elif IS_WINDOWS: expect_compilers = ['cl'] return expect_compilers def log_v(info, verbose=True): """ Print log information on stdout. """ if verbose: logger.info(info)