# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import typing import unittest import config import numpy as np import utils import paddle import paddle.nn.functional as F from paddle.incubate.autograd.utils import as_tensors def make_v(f, inputs): outputs = as_tensors(f(*inputs)) return [paddle.ones_like(x) for x in outputs] @utils.place(config.DEVICES) @utils.parameterize( (utils.TEST_CASE_NAME, 'func', 'xs'), ( ('1d_in_1d_out', utils.square, np.array([2.0, 3.0])), ( 'single_in_single_out', utils.square, np.random.rand( 6, ), ), ( 'multi_in_single_out', paddle.matmul, ( np.random.rand( 4, ), np.random.rand( 4, ), ), ), ), ) class TestJacobianNoBatch(unittest.TestCase): def setUp(self): self._dtype = ( self.xs[0].dtype if isinstance(self.xs, typing.Sequence) else self.xs.dtype ) self._eps = ( config.TOLERANCE.get(str(self._dtype)) .get("first_order_grad") .get("eps") ) self._rtol = ( config.TOLERANCE.get(str(self._dtype)) .get("first_order_grad") .get("rtol") ) self._atol = ( config.TOLERANCE.get(str(self._dtype)) .get("first_order_grad") .get("atol") ) def test_jacobian(self): xs = ( [paddle.to_tensor(x, stop_gradient=False) for x in self.xs] if isinstance(self.xs, typing.Sequence) else paddle.to_tensor(self.xs, stop_gradient=False) ) ys = ( self.func(*xs) if isinstance(xs, typing.Sequence) else self.func(xs) ) self._actual = paddle.autograd.jacobian(ys, xs, batch_axis=None) if isinstance(self._actual, (tuple, list)): self._actual = paddle.concat([x[:] for x in self._actual], axis=1) self._expected = self._get_expected() Index = collections.namedtuple('Index', ('type', 'value')) indexes = ( Index('all', (slice(0, None, None), slice(0, None, None))), Index('row', (0, slice(0, None, None))), Index('col', (slice(0, None, None), 0)), Index('multi-row', (slice(0, 2, 1), slice(0, None, None))), ) self.assertEqual(self._actual[:].numpy().dtype, self._expected.dtype) for index in indexes: np.testing.assert_allclose( self._actual.__getitem__(index.value), self._expected.__getitem__(index.value), rtol=self._rtol, atol=self._atol, err_msg=f'Testcase {index.type} index not passed, value is {index.value}', ) def test_jacobian_attribute_operator(self): xs = ( [paddle.to_tensor(x, stop_gradient=False) for x in self.xs] if isinstance(self.xs, typing.Sequence) else paddle.to_tensor(self.xs, stop_gradient=False) ) ys = ( self.func(*xs) if isinstance(xs, typing.Sequence) else self.func(xs) ) self._actual = paddle.autograd.jacobian(ys, xs, batch_axis=None) if isinstance(self._actual, (tuple, list)): self._actual = paddle.concat([x[:] for x in self._actual], axis=1) self._expected = self._get_expected() Index = collections.namedtuple('Index', ('type', 'value')) indexes = ( Index('all', (slice(0, None, None), slice(0, None, None))), Index('row', (0, slice(0, None, None))), Index('col', (slice(0, None, None), 0)), Index('multi-row', (slice(0, 2, 1), slice(0, None, None))), ) self.assertEqual(self._actual.numpy().dtype, self._expected.dtype) for index in indexes: np.testing.assert_allclose( self._actual.__getitem__(index.value), self._expected.__getitem__(index.value), rtol=self._rtol, atol=self._atol, err_msg=f'Testcase {index.type} index not passed, value is {index.value}', ) def _get_expected(self): xs = ( [paddle.to_tensor(x, stop_gradient=False) for x in self.xs] if isinstance(self.xs, typing.Sequence) else paddle.to_tensor(self.xs, stop_gradient=False) ) jac = utils._compute_numerical_jacobian( self.func, xs, self._eps, self._dtype ) return utils._np_concat_matrix_sequence(jac, utils.MatrixFormat.NM) @utils.place(config.DEVICES) @utils.parameterize( (utils.TEST_CASE_NAME, 'func', 'xs'), ( ( '1d_in_1d_out', utils.square, np.array([[1.0, 2.0, 3.0], [3.0, 4.0, 3.0]]), ), ('multi_in_single_out', utils.square, np.random.rand(2, 3)), ), ) class TestJacobianBatchFirst(unittest.TestCase): def setUp(self): self._dtype = ( self.xs[0].dtype if isinstance(self.xs, typing.Sequence) else self.xs.dtype ) self._eps = ( config.TOLERANCE.get(str(self._dtype)) .get("first_order_grad") .get("eps") ) self._rtol = ( config.TOLERANCE.get(str(self._dtype)) .get("first_order_grad") .get("rtol") ) self._atol = ( config.TOLERANCE.get(str(self._dtype)) .get("first_order_grad") .get("atol") ) def test_jacobian(self): xs = ( [paddle.to_tensor(x, stop_gradient=False) for x in self.xs] if isinstance(self.xs, typing.Sequence) else paddle.to_tensor(self.xs, stop_gradient=False) ) ys = ( self.func(*xs) if isinstance(xs, typing.Sequence) else self.func(xs) ) self._actual = paddle.autograd.jacobian(ys, xs, batch_axis=0) self._expected = self._get_expected() Index = collections.namedtuple('Index', ('type', 'value')) indexes = ( Index( 'all', ( slice(0, None, None), slice(0, None, None), slice(0, None, None), ), ), Index('row', (slice(0, None, None), 0, slice(0, None, None))), Index('col', (slice(0, None, None), slice(0, None, None), 0)), Index( 'batch', (slice(0, 2, None), slice(0, None, None), slice(0, None, None)), ), Index( 'multi_row', (slice(0, 1, None), slice(0, 2, 1), slice(0, None, None)), ), ) self.assertEqual(self._actual[:].numpy().dtype, self._expected.dtype) for index in indexes: np.testing.assert_allclose( self._actual.__getitem__(index.value), self._expected.__getitem__(index.value), rtol=self._rtol, atol=self._atol, err_msg=f'Testcase {index.type} index not passed, value is {index.value}', ) def test_jacobian_attribute_operator(self): # test for attribute operator "." xs = ( [paddle.to_tensor(x, stop_gradient=False) for x in self.xs] if isinstance(self.xs, typing.Sequence) else paddle.to_tensor(self.xs, stop_gradient=False) ) ys = ( self.func(*xs) if isinstance(xs, typing.Sequence) else self.func(xs) ) self._actual = paddle.autograd.jacobian(ys, xs, batch_axis=0) self._expected = self._get_expected() Index = collections.namedtuple('Index', ('type', 'value')) indexes = ( Index( 'all', ( slice(0, None, None), slice(0, None, None), slice(0, None, None), ), ), Index('row', (slice(0, None, None), 0, slice(0, None, None))), Index('col', (slice(0, None, None), slice(0, None, None), 0)), Index( 'batch', (slice(0, 2, None), slice(0, None, None), slice(0, None, None)), ), Index( 'multi_row', (slice(0, 1, None), slice(0, 2, 1), slice(0, None, None)), ), ) self.assertEqual(self._actual.numpy().dtype, self._expected.dtype) for index in indexes: np.testing.assert_allclose( self._actual.__getitem__(index.value), self._expected.__getitem__(index.value), rtol=self._rtol, atol=self._atol, err_msg=f'Testcase {index.type} index not passed, value is {index.value}', ) def _get_expected(self): xs = ( [paddle.to_tensor(x, stop_gradient=False) for x in self.xs] if isinstance(self.xs, typing.Sequence) else paddle.to_tensor(self.xs, stop_gradient=False) ) jac = utils._compute_numerical_batch_jacobian( self.func, xs, self._eps, self._dtype, False ) jac = utils._np_concat_matrix_sequence(jac, utils.MatrixFormat.NBM) return utils._np_transpose_matrix_format( jac, utils.MatrixFormat.NBM, utils.MatrixFormat.BNM ) class TestHessianNoBatch(unittest.TestCase): @classmethod def setUpClass(self): self.shape = (4,) self.dtype = 'float32' self.np_dtype = np.float32 self.numerical_delta = ( config.TOLERANCE.get(self.dtype).get("second_order_grad").get("eps") ) self.rtol = ( config.TOLERANCE.get(self.dtype) .get("second_order_grad") .get("rtol") ) self.atol = ( config.TOLERANCE.get(self.dtype) .get("second_order_grad") .get("atol") ) self.x = paddle.rand(shape=self.shape, dtype=self.dtype) self.y = paddle.rand(shape=self.shape, dtype=self.dtype) def func_create_graph_true(self): def func(x): return paddle.sum(F.sigmoid(x)) numerical_hessian = utils._compute_numerical_hessian( func, self.x, self.numerical_delta, self.np_dtype ) numerical_hessian = utils._np_concat_matrix_sequence(numerical_hessian) self.x.stop_gradient = False hessian = paddle.autograd.hessian(func(self.x), self.x, batch_axis=None) assert not hessian[:].stop_gradient np.testing.assert_allclose( hessian[:].numpy(), numerical_hessian, self.rtol, self.atol ) def func_out_not_single(self): def func(x): return x * x with self.assertRaises(ValueError): x = paddle.ones([3]) paddle.autograd.hessian(func(x), x, batch_axis=None) def func_add(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected + 1.0 actual = H + 1.0 np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_sub(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected - 1.0 actual = H - 1.0 np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_mul(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected * 2.0 actual = H * 2.0 np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_div(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected / 2.0 actual = H / 2.0 np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_truediv(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected / 2.0 actual = H / 2.0 np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_pow(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected**3.0 actual = H**3.0 np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_mod(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected % 1.2 actual = H % 1.2 np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_matmul(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected @ expected actual = H @ H np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_eq(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected == expected actual = H == H np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_ne(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected != expected actual = H != H np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_lt(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected < expected actual = H < H np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_le(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected <= expected actual = H <= H np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_gt(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected > expected actual = H > H np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_ge(self): def func(x): return (x * x).sum() H = paddle.autograd.hessian(func(self.x), self.x) expected = np.diag(np.full((self.x.size,), 2.0)) expected = expected >= expected actual = H >= H np.testing.assert_allclose(actual, expected, self.rtol, self.atol) def func_0Dtensor_index(self): x_0d = self.x[0].reshape([]) def func(x): return x * x with self.assertRaises(IndexError): H = paddle.autograd.hessian(func(x_0d), x_0d) H = H[:] def func_2Dtensor(self): x_2d = self.x.reshape([self.x.shape[0] // 2, 2]) def func(x): return (x * x).sum() with self.assertRaises(ValueError): H = paddle.autograd.hessian(func(x_2d), x_2d) def test_all_cases(self): self.setUpClass() self.func_create_graph_true() self.func_out_not_single() self.func_add() self.func_sub() self.func_mul() self.func_div() self.func_truediv() self.func_pow() self.func_mod() self.func_matmul() self.func_eq() self.func_ne() self.func_lt() self.func_le() self.func_gt() self.func_ge() self.func_0Dtensor_index() self.func_2Dtensor() class TestHessianBatchFirst(unittest.TestCase): @classmethod def setUpClass(self): self.x_shape = (5, 2) self.weight_shape = (2, 4) self.y_shape = (5, 2) self.nbatch, self.nrow = 5, 2 self.dtype = 'float32' self.np_dtype = np.float32 self.numerical_delta = ( config.TOLERANCE.get(self.dtype).get('second_order_grad').get('eps') ) self.rtol = ( config.TOLERANCE.get(self.dtype) .get('second_order_grad') .get('rtol') ) self.atol = ( config.TOLERANCE.get(self.dtype) .get('second_order_grad') .get('atol') ) self.x = paddle.rand(shape=self.x_shape, dtype=self.dtype) self.x.stop_gradient = False self.weight = paddle.rand(shape=self.weight_shape, dtype=self.dtype) self.weight.stop_gradient = False self.y = paddle.rand(shape=self.y_shape, dtype=self.dtype) self.y.stop_gradient = False def func_allow_unused(self): def func(x, y): return paddle.matmul(x * x, self.weight)[:, 0:1] xs_len = 2 expected = utils._compute_numerical_batch_hessian( func, [self.x, self.y], self.numerical_delta, self.np_dtype ) expected = np.reshape( np.array(expected), (xs_len, xs_len, self.nrow, self.nbatch, self.nrow), ) expected = [list(row) for row in expected] expected = utils._np_concat_matrix_sequence(expected) expected = utils._np_transpose_matrix_format( expected, utils.MatrixFormat.NBM, utils.MatrixFormat.BNM ) actual = paddle.autograd.hessian( func(self.x, self.y), [self.x, self.y], batch_axis=0 ) actual = paddle.concat( [ paddle.concat([actual[i][j][:] for j in range(2)], axis=2) for i in range(2) ], axis=1, ) np.testing.assert_allclose( actual.shape, expected.shape, rtol=self.rtol, atol=self.atol ) def func_stop_gradient(self): def func(x): return paddle.matmul(x * x, self.weight)[:, 0:1] expected = utils._compute_numerical_batch_hessian( func, self.x, self.numerical_delta, self.np_dtype ) x = self.x.clone() x.stop_gradient = True H = paddle.autograd.hessian(func(self.x), self.x, batch_axis=0)[:] actual = utils._np_transpose_matrix_format( H[:].numpy(), utils.MatrixFormat.BNM, utils.MatrixFormat.NBM ) actual = actual.reshape((H.shape[1], -1)) np.testing.assert_allclose( actual.shape, np.asarray(expected).shape, self.rtol, self.atol ) def func_out_not_single(self): def func(x): return x * x with self.assertRaises(ValueError): x = paddle.ones((3, 3)) paddle.autograd.hessian(func(x), x, batch_axis=0) def func_batch_axis_except_0(self): def func(x): return x * x with self.assertRaises(ValueError): x = paddle.ones([3]) paddle.autograd.hessian(func(x), x, batch_axis=2) def func_ndim_bigger_than_2(self): def func(x): return (x * x).sum([1, 2, 3]) with self.assertRaises(ValueError): x = paddle.ones([3, 3, 3, 3]) paddle.autograd.hessian(func(x), x, batch_axis=0) def func_batch_axis_str(self): def func(x): return (x * x).sum() with self.assertRaises(ValueError): x = paddle.ones([3, 3, 3, 3]) paddle.autograd.hessian(func(x), x, batch_axis="0") def func_ellipsis_index(self): def func(x): return (x * x).sum() with self.assertRaises(IndexError): x = paddle.ones([2, 3]) H = paddle.autograd.hessian(func(x), x, batch_axis=0)[..., 1] def test_all_cases(self): self.setUpClass() self.func_allow_unused() self.func_stop_gradient() self.func_out_not_single() self.func_batch_axis_except_0() self.func_ndim_bigger_than_2() self.func_batch_axis_str() self.func_ellipsis_index() if __name__ == "__main__": np.random.seed(2022) unittest.main()