import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid PASS_NUM = 100 EMBED_SIZE = 32 HIDDEN_SIZE = 256 N = 5 BATCH_SIZE = 32 IS_SPARSE = True word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64') third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') embed_first = fluid.layers.embedding( input=first_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr='shared_w') embed_second = fluid.layers.embedding( input=second_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr='shared_w') embed_third = fluid.layers.embedding( input=third_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr='shared_w') embed_forth = fluid.layers.embedding( input=forth_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr='shared_w') concat_embed = fluid.layers.concat( input=[embed_first, embed_second, embed_third, embed_forth], axis=1) hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid') predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax') cost = fluid.layers.cross_entropy(input=predict_word, label=next_word) avg_cost = fluid.layers.mean(x=cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) train_reader = paddle.batch( paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for pass_id in range(PASS_NUM): for data in train_reader(): input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)] input_data = map(lambda x: np.array(x).astype("int64"), input_data) input_data = map(lambda x: np.expand_dims(x, axis=1), input_data) avg_cost_np = exe.run(fluid.default_main_program(), feed={ 'firstw': input_data[0], 'secondw': input_data[1], 'thirdw': input_data[2], 'forthw': input_data[3], 'nextw': input_data[4] }, fetch_list=[avg_cost]) if avg_cost_np[0] < 5.0: exit(0) # if avg cost less than 10.0, we think our code is good. exit(1)