// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/npu_identity_kernel.h" #include "glog/logging.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/empty_kernel.h" namespace phi { template void NPUIdentityKernel(const Context& dev_ctx, const DenseTensor& x, const int format, DenseTensor* out) { VLOG(4) << "npu_identity op is only for NPU, please avoid using this kernel!"; out->ShareDataWith(x); } } // namespace phi /** [ Why need npu_identity op? ] * * 1. Ascend CANN use internal storage format for high performance * computing, for example if run BatchNorm2D op with CANN internal * storage format ACL_FORMAT_NC1HWC0, time costs in transdata will * be removed, and at will gain 2x performance improvement. * * 2.The internal storage format will use storage_properties_ in * DenseTensor, and will change the size and layout of denser, and * finally it should be called when change tensor to numpy and restore * original size and format by calling CANN Identity OP. * * TODO(qili93): remove this op after custom op and custom device * integrated and then move this op along with its code to plugin. */ PD_REGISTER_KERNEL(npu_identity, CPU, ALL_LAYOUT, phi::NPUIdentityKernel, float, double, int8_t, uint8_t, int16_t, int, int64_t, bool, phi::dtype::float16) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_KERNEL(npu_identity, GPU, ALL_LAYOUT, phi::NPUIdentityKernel, float, double, int8_t, uint8_t, int16_t, int, int64_t, bool, phi::dtype::float16) {} #endif