/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "glog/logging.h" #include "paddle/phi/kernels/addmm_kernel.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" namespace phi { template using PhiEigenTensor = EigenTensor; using Array1 = Eigen::DSizes; using Array2 = Eigen::DSizes; template void AddmmKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& x, const DenseTensor& y, float beta, float alpha, DenseTensor* out) { auto input_dims = input.dims(); auto x_dims = x.dims(); auto y_dims = y.dims(); DenseTensor input_2d(input); if (input.dims().size() == 1) { input_dims = {1, input.dims()[0]}; input_2d.Resize(input_dims); } // broadcast mode check if (x_dims[0] != input_dims[0]) { PADDLE_ENFORCE_EQ(input_dims[0], 1, errors::InvalidArgument( "When x_dims[0] is not equal with input_dims[0], " "input_dims[0] must be 1 but got %s", input_dims[0])); PADDLE_ENFORCE_EQ(y_dims[1] == input_dims[1] || input_dims[1] == 1, true, errors::InvalidArgument( "The input tensor shape mismatch, input shape=[%s], " "x shape=[%s], y shape=[%s]", input_dims, x_dims, y_dims)); } // broadcast mode check if (y_dims[1] != input_dims[1]) { PADDLE_ENFORCE_EQ(input_dims[1], 1, errors::InvalidArgument( "When y_dims[1] is not equal with input_dims[0], " "input_dims[0] must be 1 but got %s", input_dims[1])); PADDLE_ENFORCE_EQ(x_dims[0] == input_dims[0] || input_dims[0] == 1, true, errors::InvalidArgument( "The input tensor shape mismatch, input shape=[%s], " "x shape=[%s], y shape=[%s]", input_dims, x_dims, y_dims)); } // broadcast mode check PADDLE_ENFORCE_EQ( x_dims[1], y_dims[0], errors::InvalidArgument( "The input tensor X's width must be equal with matrix Y' height. " "But received X's shape = [%s], Y's shape = [%s].", x_dims[1], y_dims[0])); dev_ctx.template Alloc(out); auto blas = funcs::GetBlas(dev_ctx); // calc broadcast dim Array2 bcast_dims; bcast_dims[0] = x_dims[0] / input_dims[0]; bcast_dims[1] = y_dims[1] / input_dims[1]; VLOG(3) << "bcast_dims=[" << bcast_dims[0] << "," << bcast_dims[1] << "]"; // broadcast using eigen const DenseTensor& const_ref_input = input_2d; auto eigen_input = PhiEigenTensor::From(const_ref_input); auto eigen_out = PhiEigenTensor::From(*out); auto& place = *dev_ctx.eigen_device(); funcs::EigenBroadcast, T, 2>::Eval( place, eigen_out, eigen_input, bcast_dims); blas.GEMM(false, false, x_dims[0], y_dims[1], x_dims[1], alpha, x.data(), x_dims[1], y.data(), y_dims[1], beta, out->data(), y_dims[1]); } } // namespace phi