// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "glog/logging.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/batch_norm_kernel.h" #include "paddle/phi/kernels/funcs/batch_norm_utils.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template using EigenArrayMap = Eigen::Map>; template using ConstEigenArrayMap = Eigen::Map>; template using EigenVectorArrayMap = Eigen::Map>; template using ConstEigenVectorArrayMap = Eigen::Map>; template void BatchNormGradRawKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& scale, const DenseTensor& bias, const paddle::optional& mean, const paddle::optional& variance, const DenseTensor& saved_mean, const DenseTensor& saved_variance, const paddle::optional& reserve_space, const DenseTensor& y_grad, float momentum, float epsilon, const std::string& data_layout_str, bool is_test, bool use_global_stats, bool trainable_statistics, bool is_inplace, DenseTensor* x_grad, DenseTensor* scale_grad, DenseTensor* bias_grad) { const auto* d_y = &y_grad; DataLayout data_layout = phi::StringToDataLayout(data_layout_str); auto* d_x = x_grad; auto* d_scale = scale_grad; auto* d_bias = bias_grad; use_global_stats = is_test || use_global_stats; // batch_norm with inplace as false will take X as grad input, which // is same as cuDNN batch_norm backward calculation, batch_norm // with inplace as true only take Y as input and X should be calculate // by inverse operation of batch_norm on Y if (is_inplace) { if (d_x) { PADDLE_ENFORCE_EQ(d_x, d_y, phi::errors::InvalidArgument( "X@GRAD and Y@GRAD inplaced in non-inplace mode")); } } else { if (d_x) { PADDLE_ENFORCE_NE(d_x, d_y, phi::errors::InvalidArgument( "X@GRAD and Y@GRAD inplaced in non-inplace mode")); } } // Get the size for each dimension. // NCHW [batch_size, in_channels, in_height, in_width] const auto& x_dims = x.dims(); PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::InvalidArgument( "The size of input X's dimensions should be larger than 1." "But received: the size of input X's dimensions is [%d]", x_dims.size())); PADDLE_ENFORCE_LE( x_dims.size(), 5, phi::errors::InvalidArgument( "The size of input X's dimensions should be less than 6." "But received: the size of input X's dimensions is [%d]", x_dims.size())); const int N = x_dims[0]; const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int sample_size = x.numel() / N / C; // input dimension is 2 and the format is NCHW. The input can be regarded as // NHWC format if (x_dims.size() == 2 && data_layout == DataLayout::kNCHW) { data_layout = DataLayout::kNHWC; } // init output if (d_x) { ctx.template Alloc(d_x); } const T* mean_data = nullptr; const T* inv_var_data = nullptr; DenseTensor inv_var_tensor; if (use_global_stats) { const auto* running_mean = mean.get_ptr(); const auto* running_variance = variance.get_ptr(); mean_data = running_mean->data(); inv_var_tensor.Resize({C}); T* running_inv_var_data = ctx.template Alloc(&inv_var_tensor); EigenVectorArrayMap inv_var_tmp(running_inv_var_data, C); ConstEigenVectorArrayMap var_arr(running_variance->data(), C); inv_var_tmp = (var_arr + epsilon).sqrt().inverse(); inv_var_data = running_inv_var_data; } else { mean_data = saved_mean.data(); inv_var_data = saved_variance.data(); } ConstEigenVectorArrayMap scale_arr(scale.data(), C); ConstEigenVectorArrayMap bias_arr(bias.data(), C); ConstEigenVectorArrayMap mean_arr(mean_data, C); ConstEigenVectorArrayMap inv_var_arr(inv_var_data, C); T* d_bias_data = nullptr; T* d_scale_data = nullptr; if (d_scale && d_bias) { d_bias_data = ctx.template Alloc(d_bias); d_scale_data = ctx.template Alloc(d_scale); } // d_bias = np.sum(d_y, axis=0) // d_scale = np.sum((X - mean) / inv_std * dy, axis=0) // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0) // - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0)) EigenVectorArrayMap d_bias_arr(d_bias_data, C); EigenVectorArrayMap d_scale_arr(d_scale_data, C); if (d_scale && d_bias) { d_bias_arr.setZero(); d_scale_arr.setZero(); } if (d_x && (N * sample_size) == 1 && !use_global_stats) { phi::Copy(ctx, *d_y, ctx.GetPlace(), false, d_x); return; } int scale_coefff = use_global_stats ? 1 : N * sample_size; const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff; DenseTensor dy_sum; dy_sum.Resize({C}); auto dy_sum_data = ctx.template Alloc(&dy_sum); EigenVectorArrayMap dy_sum_arr(dy_sum_data, C); DenseTensor dy_mul_x_sub_mean_mul_invstd_sum; dy_mul_x_sub_mean_mul_invstd_sum.Resize({C}); auto dy_mul_x_sub_mean_mul_invstd_sum_data = ctx.template Alloc(&dy_mul_x_sub_mean_mul_invstd_sum); EigenVectorArrayMap dy_mul_x_sub_mean_mul_invstd_sum_arr( dy_mul_x_sub_mean_mul_invstd_sum_data, C); dy_sum_arr.setZero(); dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero(); // inplace calculation // Y: ((x - est_mean) * (inv_var) * scale + bias // formula transform ====> // (x * inv_var * scale) + (bias - est_mean * inv_var * scale) // X: (y - bias) / scale / (inv_var) + est_mean // formula transform ====> // (y - bias) / (scale * inv_var) + est_mean switch (data_layout) { case DataLayout::kNCHW: { if (is_inplace) { auto px = x; EigenArrayMap x_data(ctx.template Alloc(&px), sample_size, N * C); ConstEigenArrayMap y_data(x.data(), sample_size, N * C); for (int nc = 0; nc < N * C; ++nc) { x_data.col(nc) = (y_data.col(nc) - bias_arr(nc % C)) / scale_inv_var_nhw(nc % C) / scale_coefff + mean_arr(nc % C); } } ConstEigenArrayMap x_arr(x.data(), sample_size, N * C); ConstEigenArrayMap d_y_arr(d_y->data(), sample_size, N * C); for (int nc = 0; nc < N * C; ++nc) { int c = nc % C; dy_sum_arr(c) += d_y_arr.col(nc).sum(); dy_mul_x_sub_mean_mul_invstd_sum_arr(c) += ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc)) .sum(); } if (d_scale && d_bias) { d_bias_arr = dy_sum_arr; d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr; } if (d_x) { EigenArrayMap d_x_arr( ctx.template Alloc(d_x), sample_size, N * C); if (!use_global_stats) { for (int nc = 0; nc < N * C; ++nc) { int c = nc % C; d_x_arr.col(nc) = scale_inv_var_nhw(c) * (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) - (x_arr.col(nc) - mean_arr[c]) * dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c)); } } else { for (int nc = 0; nc < N * C; ++nc) { int c = nc % C; d_x_arr.col(nc) = scale_inv_var_nhw(c) * d_y_arr.col(nc); } } } break; } case DataLayout::kNHWC: { if (is_inplace) { auto px = x; EigenArrayMap x_data(ctx.template Alloc(&px), C, N * sample_size); ConstEigenArrayMap y_data(x.data(), C, N * sample_size); for (int nhw = 0; nhw < N * sample_size; nhw++) { x_data.col(nhw) = (y_data.col(nhw) - bias_arr) / scale_inv_var_nhw / scale_coefff + mean_arr; } } ConstEigenArrayMap x_arr(x.data(), C, N * sample_size); ConstEigenArrayMap d_y_arr(d_y->data(), C, N * sample_size); for (int nhw = 0; nhw < N * sample_size; ++nhw) { dy_sum_arr += d_y_arr.col(nhw); dy_mul_x_sub_mean_mul_invstd_sum_arr += (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw); } if (d_scale && d_bias) { d_bias_arr = dy_sum_arr; d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr; } if (d_x) { EigenArrayMap d_x_arr( ctx.template Alloc(d_x), C, N * sample_size); if (!use_global_stats) { for (int nhw = 0; nhw < N * sample_size; ++nhw) { d_x_arr.col(nhw) = scale_inv_var_nhw * (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr - (x_arr.col(nhw) - mean_arr) * dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr); } } else { for (int nhw = 0; nhw < N * sample_size; ++nhw) { d_x_arr.col(nhw) = scale_inv_var_nhw * d_y_arr.col(nhw); } } } break; } default: PADDLE_THROW(phi::errors::InvalidArgument("Unknown storage order: %s", data_layout_str)); } } template void BatchNormGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& scale, const DenseTensor& bias, const paddle::optional& mean, const paddle::optional& variance, const DenseTensor& saved_mean, const DenseTensor& saved_variance, const paddle::optional& reserve_space, const DenseTensor& y_grad, float momentum, float epsilon, const std::string& data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, DenseTensor* x_grad, DenseTensor* scale_grad, DenseTensor* bias_grad) { BatchNormGradRawKernel(dev_ctx, x, scale, bias, mean, variance, saved_mean, saved_variance, reserve_space, y_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics, false, x_grad, scale_grad, bias_grad); } template void BatchNormDoubleGradKernel( const Context& ctx, const DenseTensor& x, const DenseTensor& scale, const paddle::optional& mean, const paddle::optional& variance, const DenseTensor& saved_mean, const DenseTensor& saved_variance, const DenseTensor& y_grad, const paddle::optional& x_grad_grad, const paddle::optional& scale_grad_grad, const paddle::optional& bias_grad_grad, float momentum, float epsilon, const std::string& data_layout_str, bool is_test, bool use_global_stats, bool trainable_statistics, DenseTensor* x_grad, DenseTensor* scale_grad, DenseTensor* y_grad_grad) { const auto* X = &x; const auto* Scale = &scale; const auto* dY = &y_grad; const auto* Saved_mean = &saved_mean; const auto* Saved_variance = &saved_variance; PADDLE_ENFORCE_EQ(is_test, false, phi::errors::InvalidArgument( "`is_test = True` CANNOT be used in train program. If " "you want to use global status in pre_train model, " "please set `use_global_stats = True`")); const auto data_layout = phi::StringToDataLayout(data_layout_str); const auto* ddX = x_grad_grad.get_ptr(); const auto* ddScale = scale_grad_grad.get_ptr(); const auto* ddBias = bias_grad_grad.get_ptr(); auto* dX = x_grad; auto* dScale = scale_grad; auto* ddY = y_grad_grad; ctx.template Alloc(dX); ctx.template Alloc(ddY); const auto& x_dims = X->dims(); const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int sample_size = X->numel() / C; phi::funcs::SetConstant set_constant; const T* mean_data = Saved_mean->data(); const T* inv_var_data = Saved_variance->data(); DenseTensor inv_var_tensor; if (use_global_stats) { const auto* running_mean = mean.get_ptr(); const auto* running_variance = variance.get_ptr(); mean_data = running_mean->data(); inv_var_tensor.Resize({C}); T* running_inv_var_data = ctx.template Alloc(&inv_var_tensor); EigenVectorArrayMap inv_var_tmp(running_inv_var_data, C); ConstEigenVectorArrayMap var_arr(running_variance->data(), C); inv_var_tmp = (var_arr + epsilon).sqrt().inverse(); inv_var_data = running_inv_var_data; } // transpose NCHW -> NHWC for easy calculate DenseTensor transformed_x(X->type()); DenseTensor transformed_dy(dY->type()); DenseTensor transformed_ddx(ddX->type()); DenseTensor transformed_dx(dX->type()); DenseTensor transformed_ddy(ddY->type()); if (data_layout == DataLayout::kNCHW && x_dims.size() > 2) { VLOG(3) << "Transform batchnorm output from NCHW to NHWC"; // Input Tensor ResizeToChannelLast(ctx, X, &transformed_x); TransToChannelLast(ctx, X, &transformed_x); ResizeToChannelLast(ctx, dY, &transformed_dy); TransToChannelLast(ctx, dY, &transformed_dy); ResizeToChannelLast(ctx, ddX, &transformed_ddx); TransToChannelLast(ctx, ddX, &transformed_ddx); // Output Tensor ResizeToChannelLast(ctx, dX, &transformed_dx); ResizeToChannelLast(ctx, ddY, &transformed_ddy); } else { transformed_x.ShareDataWith(*X); transformed_dy.ShareDataWith(*dY); transformed_ddx.ShareDataWith(*ddX); transformed_dx.ShareDataWith(*dX); transformed_ddy.ShareDataWith(*ddY); } ConstEigenArrayMap x_arr(transformed_x.data(), C, sample_size); ConstEigenVectorArrayMap mean_arr(mean_data, C); ConstEigenVectorArrayMap inv_var_arr(inv_var_data, C); Tensor mean_tile; mean_tile.Resize({C, sample_size}); EigenArrayMap mean_tile_data( ctx.template Alloc(&mean_tile), C, sample_size); DenseTensor inv_var_tile; inv_var_tile.Resize({C, sample_size}); EigenArrayMap inv_var_tile_data( ctx.template Alloc(&inv_var_tile), C, sample_size); mean_tile_data = mean_arr.replicate(1, sample_size); inv_var_tile_data = inv_var_arr.replicate(1, sample_size); DenseTensor Scale_data; if (!Scale) { Scale_data.Resize({C}); ctx.template Alloc(&Scale_data); set_constant(ctx, &Scale_data, static_cast(1)); } ConstEigenVectorArrayMap scale_arr( Scale ? Scale->data() : Scale_data.data(), C); Tensor scale_tile; scale_tile.Resize({C, sample_size}); EigenArrayMap scale_tile_data( ctx.template Alloc(&scale_tile), C, sample_size); scale_tile_data = scale_arr.replicate(1, sample_size); ConstEigenArrayMap dy_arr(transformed_dy.data(), C, sample_size); ConstEigenArrayMap ddx_arr(transformed_ddx.data(), C, sample_size); DenseTensor x_sub_mean_mul_invstd; x_sub_mean_mul_invstd.Resize({C, sample_size}); EigenArrayMap x_sub_mean_mul_invstd_arr( ctx.template Alloc(&x_sub_mean_mul_invstd), C, sample_size); x_sub_mean_mul_invstd_arr = (x_arr - mean_tile_data) * inv_var_tile_data; if (dX) { ctx.template Alloc(dX); EigenArrayMap dx_arr( ctx.template Alloc(&transformed_dx), C, sample_size); dx_arr.setZero(); if (use_global_stats) { // math: dx = (ddscale * dy) * inv_var if (ddScale) { ConstEigenVectorArrayMap ddscale_arr(ddScale->data(), C); Tensor ddscale_tile; ddscale_tile.Resize({C, sample_size}); EigenArrayMap ddscale_tile_data( ctx.template Alloc(&ddscale_tile), C, sample_size); ddscale_tile_data = ddscale_arr.replicate(1, sample_size); dx_arr = dy_arr * ddscale_tile_data * inv_var_tile_data; } } else { // math: dx = scale * ((x - mean) * inv_var / NxHxW * (np.mean(ddx, // axis=(n,h,w)) * // np.sum(dy, axis=(n,h,w)) - // np.sum(dy * ddx, axis=(n,h,w)) + 3 * np.mean(dy * (x - // mean), // axis=(n,h,w)) * inv_var.pow(2) * // np.sum(ddx * (x - mean), axis=(n,h,w))) + inv_var.pow(3) / // NxHxW * // np.sum(ddx * (x - mean)) * // (np.mean(dy, axis=(n,h,w)) - dy) + inv_var.pow(3) / NxHxW * // np.sum(dy, // axis=(n,h,w)) * (x - mean) * // (np.mean(ddx, axis=(n,h,w)) - ddx)) + ddr * (dy * inv_var - // inv_var // * // np.mean(dy, axis=(n,h,w)) - // inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean), // axis=(n,h,w))) if (ddX) { dx_arr += (x_sub_mean_mul_invstd_arr * inv_var_tile_data * inv_var_tile_data / sample_size) .colwise() * (ddx_arr.rowwise().sum() * dy_arr.rowwise().sum() / sample_size - (dy_arr * ddx_arr).rowwise().sum() + 3. * (dy_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() * (ddx_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() / sample_size); dx_arr += (inv_var_tile_data * inv_var_tile_data).colwise() * (ddx_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() / sample_size * (dy_arr.rowwise().sum() / sample_size - dy_arr); dx_arr += (inv_var_tile_data * inv_var_tile_data).colwise() * (dy_arr * x_sub_mean_mul_invstd_arr).rowwise().sum() / sample_size * (ddx_arr.rowwise().sum() / sample_size - ddx_arr); dx_arr = scale_tile_data * dx_arr; } if (ddScale) { ConstEigenVectorArrayMap ddscale_arr(ddScale->data(), C); Tensor ddscale_tile; ddscale_tile.Resize({C, sample_size}); EigenArrayMap ddscale_tile_data( ctx.template Alloc(&ddscale_tile), C, sample_size); ddscale_tile_data = ddscale_arr.replicate(1, sample_size); dx_arr += (dy_arr * inv_var_tile_data - (dy_arr.rowwise().sum().replicate(1, sample_size) / sample_size) * inv_var_tile_data - x_sub_mean_mul_invstd_arr * inv_var_tile_data * (dy_arr * x_sub_mean_mul_invstd_arr) .rowwise() .sum() .replicate(1, sample_size) / sample_size) * ddscale_tile_data; } } if (data_layout == DataLayout::kNCHW) { VLOG(3) << "Transform batchnorm output from NHWC to NCHW"; TransToChannelFirst(ctx, &transformed_dx, dX); } } if (dScale) { EigenVectorArrayMap dscale_arr(ctx.template Alloc(dScale), C); dscale_arr.setZero(); if (use_global_stats) { // math: dscale = np.sum(ddx * dy, axis=(n,h,w)) * inv_var if (ddX) { dscale_arr = (ddx_arr * dy_arr * inv_var_tile_data).rowwise().sum(); } } else { // math: dscale = inv_var * (dy - np.mean(dy, axis=(n,h,w) - (x-mean) * // inv_var.pow(2) * np.mean(dy * (x-mean), axis=(n,h,w)))) * // ddx if (ddX) { Tensor first_grad; first_grad.Resize({C, sample_size}); EigenArrayMap first_grad_arr( ctx.template Alloc(&first_grad), C, sample_size); first_grad_arr.setZero(); first_grad_arr += inv_var_tile_data * (dy_arr - dy_arr.rowwise().sum().replicate(1, sample_size) / sample_size - x_sub_mean_mul_invstd_arr * (dy_arr * x_sub_mean_mul_invstd_arr) .rowwise() .sum() .replicate(1, sample_size) / sample_size); dscale_arr = (first_grad_arr * ddx_arr).rowwise().sum(); } } } if (ddY) { ctx.template Alloc(ddY); EigenArrayMap ddy_arr( ctx.template Alloc(&transformed_ddy), C, sample_size); ddy_arr.setZero(); if (use_global_stats) { // math: ddy = r * ddx * inv_var + ddbias + // ddscale * (x - mean) * inv_var if (ddX) { ddy_arr = scale_tile_data * ddx_arr * inv_var_tile_data; } } else { // math: ddy = (x - mean) * inv_var * ddscale + ddbias + // scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) * // np.mean(ddx * (x - mean), axis=(n,h,w))) if (ddX) { ddy_arr += scale_tile_data * inv_var_tile_data * (ddx_arr - ddx_arr.rowwise().sum().replicate(1, sample_size) / sample_size - x_sub_mean_mul_invstd_arr * (ddx_arr * x_sub_mean_mul_invstd_arr) .rowwise() .sum() .replicate(1, sample_size) / sample_size); } } if (ddScale) { ConstEigenVectorArrayMap ddscale_arr(ddScale->data(), C); Tensor ddscale_tile; ddscale_tile.Resize({C, sample_size}); EigenArrayMap ddscale_tile_data( ctx.template Alloc(&ddscale_tile), C, sample_size); ddscale_tile_data = ddscale_arr.replicate(1, sample_size); ddy_arr += x_sub_mean_mul_invstd_arr * ddscale_tile_data; } if (ddBias) { ConstEigenVectorArrayMap ddbias_arr(ddBias->data(), C); Tensor ddbias_tile; ddbias_tile.Resize({C, sample_size}); EigenArrayMap ddbias_tile_data( ctx.template Alloc(&ddbias_tile), C, sample_size); ddbias_tile_data = ddbias_arr.replicate(1, sample_size); ddy_arr += ddbias_tile_data; } if (data_layout == DataLayout::kNCHW) { VLOG(3) << "Transform batchnorm output from NHWC to NCHW"; TransToChannelFirst(ctx, &transformed_ddy, ddY); } } } } // namespace phi PD_REGISTER_KERNEL( batch_norm_grad, CPU, ALL_LAYOUT, phi::BatchNormGradKernel, float, double) { } PD_REGISTER_KERNEL(batch_norm_grad_raw, CPU, ALL_LAYOUT, phi::BatchNormGradRawKernel, float, double) {} PD_REGISTER_KERNEL(batch_norm_double_grad, CPU, ALL_LAYOUT, phi::BatchNormDoubleGradKernel, float, double) {}